【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
题面
题解
显然交亵渎的次数是\(m+1\)。
那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1}\),中间再减掉几项直接暴力就行了。
所以只要考虑求这个东西。
比如说斯特林数?
\]
那么
\sum_{i=1}^n i^m&=\sum_{i=1}^n\sum_{j=0}^m {i\choose j}j!\begin{Bmatrix}m\\j\end{Bmatrix}\\
&=\sum_{j=0}^m j!\begin{Bmatrix}m\\j\end{Bmatrix}\sum_{i=1}^n{i\choose j}\\
&=\sum_{j=0}^m j!\begin{Bmatrix}m\\j\end{Bmatrix}{n+1\choose j+1}\\
&=\sum_{j=0}^m \begin{Bmatrix}m\\j\end{Bmatrix}\frac{(n+1)^{\underline {j+1}}}{j+1}
\end{aligned}\]
这样子可以做到\(O(m^2)\)。
斯特林数直接\(O(m^2)\)暴力预处理即可。
讲个笑话,这题我long long
都没开就过了。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define ll long long
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int S[60][60];
int Calc(int n,int m)
{
int ret=0;n+=1;
for(int j=0;j<=m;++j)
{
int s=1;for(int k=0;k<=j;++k)s=1ll*s*(n-k+MOD)%MOD;
ret=(ret+1ll*S[m][j]*s%MOD*fpow(j+1,MOD-2))%MOD;
}
return ret;
}
ll n,a[55];int m;
int main()
{
S[0][0]=1;
for(int i=1;i<=55;++i)
for(int j=1;j<=i;++j)
S[i][j]=(1ll*S[i-1][j]*j+S[i-1][j-1])%MOD;
int T=read();
while(T--)
{
n=read();m=read();for(int i=1;i<=m;++i)a[i]=read();
sort(&a[1],&a[m+1]);int ans=0;
for(int i=0;i<=m;++i)
{
ans=(ans+Calc((n-a[i])%MOD,m+1))%MOD;
for(int j=i+1;j<=m;++j)ans=(ans+MOD-fpow((a[j]-a[i])%MOD,m+1))%MOD;
}
printf("%d\n",ans);
}
return 0;
}
【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)的更多相关文章
- [BZOJ5339] [TJOI2018]教科书般的亵渎
题目链接 BZOJ题面. 洛谷题面. Solution 随便推一推,可以发现瓶颈在求\(\sum_{i=1}^n i^k\),关于这个可以看看拉格朗日插值法. 复杂度\(O(Tm^2)\). #inc ...
- 洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...
- 【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)
传送门 题意: 一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\). 然后有\(m\)种没有出现的血量,\(m\leq 50\). 现在有个人可 ...
- Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...
- BZOJ5339:[TJOI2018]教科书般的亵渎——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5339 https://www.luogu.org/problemnew/show/P4593 小豆 ...
- 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
- [TJOI2018]教科书般的亵渎
嘟嘟嘟 题面挺迷的,拿第一个样例说一下: 放第一次亵渎,对答案产生了\(\sum_{i = 1} ^ {10} i ^ {m + 1} - 5 ^ {m + 1}\)的贡献,第二次亵渎产生了\(\su ...
- P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...
随机推荐
- Jenkins ChangeLog
Log changes in Jenkins - Stack Overflowhttps://stackoverflow.com/questions/13631145/log-changes-in-j ...
- jmeter高并发设计方案(转)
高并发设计方案二(秒杀架构) 优化方向: (1)将请求尽量拦截在系统上游(不要让锁冲突落到数据库上去).传统秒杀系统之所以挂,请求都压倒了后端数据层,数据读写锁冲突严重,并发高响应慢,几乎所有请求都超 ...
- 手机移动端input date placehoder不显示
要解决这个问题,我们可以伪造一个placehoder,通过css跟js来解决这个问题. 为什么要用js的原因是因为当你选择了时间之后,placehoder的文字没有清除掉,所以我们就需要把这个伪造的p ...
- Azure系列2.1.8 —— BlockEntry
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- JavaScript lastIndexOf() 方法
<script type="text/javascript"> var str="0000.0000.0000.0000.0000.0000.0000.&qu ...
- C#如何调用C++的dll
背景 一个项目,算法部分使用C++的openCV库编写图像处理程序,编译成dll,用户界面采用C#编写,去调用该dll暴露的接口. C#编写的是托管代码,编译生成微软中间语言,而普通C++代码则编译 ...
- python爬虫之正则表达式
一.简介 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达式.常规表示法(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念 ...
- CentOS7装Tomcat
有两种安装方式:(1)yum 命令 (2)安装包 本次采用第二种方式: 1.windos下载apache-tomcat-7.0.73.tar.gz安装包 2.通过WinSCP传到linux下(本次放 ...
- powerdesigner 16.5 不允许有扩展属性,或对象不存在
创建完之后这边会出现 选择刚创建的用户 这样就可以了
- kubernetes job的原理
job例子: apiVersion: batch/v1 #job的apiVersion kind: Job #资源类型为job metadata: labels: name: busybox name ...