题目链接:https://codeforces.com/problemset/problem/1096/G

大意:给出\(k\)个数码\(d_1,d_2,\cdots,d_k\),构造一个由这\(k\)个数码组成的\(n\)位数(可重复使用数码),使得该数的前\(\frac{n}{2}\)位数码之和等于后\(\frac{n}{2}\)位数码之和,求方案数

分析:转化一下题意就是说构造\(\frac{n}{2}\)位数,求构成数的各位数字之和的方案数,最后乘法原理乘一下即可

如果满足\(n\leq1000\)的话跑完全背包即可,然而数据放到了\(2·10^5\)

我们考虑一下如下的生成函数(其实不能称作标准的生成函数):\((x^{d_1}+x^{d_2}+\cdots+x^{d_k})^{\frac{n}{2}}\)

我们将它展开,每一项的次数就是表示出来的数的各位上的数码之和,系数就表示方案数(不就是完全背包么)

由于项数最大也就是\(2·10^6\),直接NTT+快速幂即可

#include<iostream>
#include<string>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
#define rep(i,a,b) for (i=a;i<=b;i++)
typedef long long ll;
#define maxd 998244353
#define pi acos(-1.0)
#define N 2000000
#define int long long
ll a[5004000],b[5000400];
int n,r[5004000],k,lim=1,cnt=0; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} int qpow(int x,int y)
{
int ans=1,sum=x;
while (y)
{
int tmp=y%2;y/=2;
if (tmp) ans=(1ll*ans*sum)%maxd;
sum=(1ll*sum*sum)%maxd;
}
return ans;
} void ntt(int lim,ll *a,int typ)
{
int i;
for (i=0;i<lim;i++)
if (i<r[i]) swap(a[i],a[r[i]]);
int mid;
for (mid=1;mid<lim;mid<<=1)
{
int gn=qpow(3,(maxd-1)/(mid<<1));
int sta,len=mid<<1,j;
for (sta=0;sta<lim;sta+=len)
{
int g=1;
for (j=0;j<mid;j++,g=(g*gn)%maxd)
{
int x1=a[j+sta],y1=(g*a[j+sta+mid])%maxd;
a[j+sta]=(x1+y1)%maxd;
a[j+sta+mid]=(x1-y1+maxd)%maxd;
}
}
}
if (typ==-1) reverse(&a[1],&a[lim]);
} void init()
{
n=read();k=read();
//memset(a,0,sizeof(a));
int i;n/=2;
for (i=1;i<=k;i++)
{int x=read();a[x]=1;}
while (lim<=N) {lim<<=1;cnt++;}
for (i=0;i<=lim;i++)
r[i]=((r[i>>1]>>1)|((i&1)<<(cnt-1)));
} void work()
{
ntt(lim,a,1);int i;
for (i=0;i<lim;i++) a[i]=qpow(a[i],n);
ntt(lim,a,-1);
ll ans=0,tmp=qpow(lim,maxd-2);
for (i=0;i<=N;i++)
{
a[i]=(a[i]*tmp)%maxd;
ans=(ans+1ll*a[i]*a[i])%maxd;
}
printf("%lld",ans);
} signed main()
{
init();
work();
return 0;
}

codeforces1096G Lucky Tickets的更多相关文章

  1. Codeforces1096G Lucky Tickets(NTT优化dp)

    设\(f[i][j]\)表示填了\(i\)个数,数位和为\(j\)的方案数 于是方程为: \[f[i][j]=\sum_{k=0}^9 f[i-1][j-k]*[CanUse[k]==1]\] 其中\ ...

  2. Codeforces Gym 100418J Lucky tickets 数位DP

    Lucky ticketsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view ...

  3. POJ-2346 Lucky tickets(线性DP)

    Lucky tickets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3298 Accepted: 2174 Descrip ...

  4. CF1096. G. Lucky Tickets(快速幂NTT)

    All bus tickets in Berland have their numbers. A number consists of n digits (n is even). Only k dec ...

  5. DP+高精度 URAL 1036 Lucky Tickets

    题目传送门 /* 题意:转换就是求n位数字,总和为s/2的方案数 DP+高精度:状态转移方程:dp[cur^1][k+j] = dp[cur^1][k+j] + dp[cur][k]; 高精度直接拿J ...

  6. Ural 1036 Lucky Tickets

    Lucky Tickets Time Limit: 2000ms Memory Limit: 16384KB This problem will be judged on Ural. Original ...

  7. POJ 2346:Lucky tickets

    Lucky tickets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3247   Accepted: 2136 Des ...

  8. URAL1036. Lucky Tickets

    链接 dp[i][j] += dp[i-1][j-g];背包吧 数据太大了 还是JAVA好用 import java.io.*; import java.math.*; import java.tex ...

  9. poj 2346 Lucky tickets(区间dp)

    题目链接:http://poj.org/problem?id=2346 思路分析:使用动态规划解法:设函数 d( n, x )代表长度为n且满足左边n/2位的和减去右边n/2位的和为x的数的数目. 将 ...

随机推荐

  1. ACM-ICPC 2018 沈阳赛区网络预赛-I模拟题啊!!!

    垃圾题,题目巨TM长...这题题意就是说给你一个16进制串,让你把每一位转成长度为4的2进制数,并把这些数连接起来,连接完成后,进行奇偶校验,把字符串切割成每个长度为9的字符串,然后计算前8位的 1的 ...

  2. Iar8.1安装包破解

    Iar8.1安装包链接链接:https://pan.baidu.com/s/1F6sxEcatk3_YPq47lvc8Mw 密码:mnlz 破解链接  https://www.cnblogs.com/ ...

  3. JavaScript修改DOM节点时,样式优先级的问题

    通过element.style.xxx设置或者读取的xxx样式属性,都是属于行间样式(<p style="color=red"></p>),并不是 使用li ...

  4. vue动态class——实现tag的选中状态

    vue动态class——实现tag的选中状态 <template> <div class="common-nav"> <div class=" ...

  5. JEECG&JWT异常捕获强化处理 | Java: Meaning of catch (final SomeException e)?

    //从header中得到token String authHeader = request.getHeader(JwtConstants.AUTHORIZATION); if (authHeader ...

  6. MySQL之数据导入导出

    日常开发中,经常会涉及到对于数据库中数据的导入与导出操作,格式也有很多: TXT,CSV,XLS,SQL等格式,所以,在此总结一下,省的总是百度查询. 一 导出 1) 常用的方式就是使用现成的工具例如 ...

  7. html5-attr和prop

    ###1.什么是attrbute和property attribute(attr) html标签的预定义属性 checked html标签的自定义属性         a eg: <input ...

  8. AngularJS双向数据绑定

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. bootstrap模态框动态赋值, ajax异步请求数据后给id为queryInfo的模态框赋值并弹出模态框(JS)

    /查询单个 function query(id) { $.ajax({ url : "/small/productServlet", async : true, type : &q ...

  10. C# Note8: 设计模式全解

    前言——资源说明 目前网上设计模式的介绍可谓非常之多(各种编程语言的版本),其中不乏精细之作,本文的目的在于搜集和整理C#或C++的设计模式,毕竟思想还是共通的! 设计模式的分类 创建型模式,共五种: ...