Short Description:

ORC Creation Best Practices with examples and references.

Article

Synopsis.

ORC is a columnar storage format for Hive.

This document is to explain how creation of ORC data files can improve read/scan performance when querying the data. TEZ execution engine provides different ways to optimize the query, but it will do the best with correctly created ORC files.

ORC Creation Strategy.

Example:

  1. CREATE [EXTERNAL] TABLE OrcExampleTable
  2. (clientid int, name string, address string, age int)
  3. stored as orc
  4. TBLPROPERTIES (
  5. "orc.compress"="ZLIB",
  6. "orc.compress.size"="262144",
  7. "orc.create.index"="true",
  8. "orc.stripe.size"="268435456",
  9. "orc.row.index.stride"="3000",
  10. "orc.bloom.filter.columns"="clientid,age,name");

Ingesting data into Hive tables heavily depends on usage patterns. In order to make queries running efficiently, ORC files should be created to support those patterns.

  • -Identify most important/frequent queries that will be running against your data set (based on filter or JOIN conditions)
  • -Configure optimal data file size
  • -Configure stripe and stride size
  • -Distribute and sort data during ingestion
  • -Run “analyze” table in order to keep statistics updated

Usage Patterns.

Filters are mainly used in “WHERE” clause and “JOIN … ON”. An information about the fields being used in filters should be used as well for choosing correct strategy for ORC files creation.

Example:

  1. select * from orcexampletable
  2. where clientid=100 and age between 25 and 45;

Does size matter?

As known, small files are a pain in HDFS. ORC files aren’t different than others. Even worse.

First of all, small files will impact NameNode memory and performance. But more importantly is response time from the query. If ingestion jobs generate small files, it means there will be large number of the files in total.

When query is submitted, TEZ will need an information about the files in order to build an execution plan and allocate resources from YARN.

So, before TEZ engine starts a job:

  • -TEZ gets an information from HCat about table location and partition keys. Based on this information TEZ will have exact list of directories (and subdirectories) where data files can be found.
  • -TEZ reads ORC footers and stripe level indices in each file in order to determine how many blocks of data it will need to process. This is where the problem of large number of files will impact the job submission time.
  • -TEZ requests containers based on number of input splits. Again, small files will cause less flexibility in configuring input split size, and as result, larger number of containers will need to be allocated

Note, if query submit stage time-outs, check the number of ORC files (also, see below how ORC split strategy (ETL vs BI) can affect query submission time).

There is always a trade-off between ingestion query performance. Keep to a minimum number of ORC files being created, but to satisfy acceptable level of ingestion performance and data latency.

For transactional data being ingested continuously during the day, set up daily table/partition re-build process to optimize number of files and data distribution.

Stripes and Strides.

ORC files are splittable on a stripe level. Stripe size is configurable and should depend on average length (size) of records and on how many unique values of those sorted fields you can have. If search-by field is unique (or almost unique), decrease stripe size, if heavily repeated – increase. While default is 64 MB, keep stripe size in between ¼ of block-size to 4 blocks-size (default ORC block size is 256 MB). Along with that you can play with input split size per job to decrease number of containers required for a job. Sometimes it’s even worth to reconsider HDFS block size (default HDFS block size if 128 MB).

Stride is a set of records for which range index (min/max and some additional stats) will be created. Stride size (number of records, default 10K): for unique values combinations of fields in bloom filter (or close to unique) – go with 3-7 K records. Non-unique 7-15 K records or even more. If bloom filter contains unsorted fields, that will also make you go with smaller number of records in stride.

Bloom filter can be used on sorted field in combination with additional fields that can participate in search-by clause.

Sorting and Distribution.

Most important for efficient search within the data set is how this set stored.

Since TEZ utilize ORC file level information (min/max range index per field, bloom filter, etc.), it is important that those ranges will give the best reference to the exact block of data having desired values.

Here is an example:

This example shows that with unsorted data, TEZ will request 4 containers and up to full table scan, while with sorted data – only single container for single stripe read.

The best result can be achieved by globally sorting the data in a table (or partition).

Global sorting in Hive (“ORDER BY”) enforces single reducer to sort final data set. It can be inefficient. That’s when “DISTRIBUTE BY” comes in help.

For example, let’s say we have daily partition with 200 GB and field “clientid” that we would like to sort by. Assuming we have enough power (cores) to run 20 parallel reducers, we can:

1. Limit number of reducers to 20 (mapred.reduce.tasks)

2. Distribute all the records to 20 reducers equally:

  1. insert into …
  2. select … from …
  3. distribute by floor(clientid/((<max(clientid)> – <min(clientid)> + 1)/ 20 )
  4. sort by clientid.
  • Note, this will work well if client ID values are distributed evenly on scale between min and max values. If that’s not the case, find better distribution function, but ensure that ranges of values going to different reducers aren’t intersecting.

3. Alternatively, use PIG to order by client id (with parallel 20).

Usage.

There is a good article on query optimization:

https://community.hortonworks.com/articles/68631/optimizing-hive-queries-for-orc-formatted-tables.html

I would only add to that following items to consider when working with ORC:

Analyze table.

Once the data is ingested and ready, run:

  1. analyze table t [partition p] compute
  2. statistics for [columns c,...];

Refer to https://cwiki.apache.org/confluence/display/Hive/Column+Statistics+in+Hive for more details.

Note, ANALYZE statement is time consuming. More columns are defined to be analyzed – longer time it takes to complete.

Let me know if you have more tips in this area!

ORC Creation Best Practices的更多相关文章

  1. Async/Await - Best Practices in Asynchronous Programming z

    These days there’s a wealth of information about the new async and await support in the Microsoft .N ...

  2. Best MVC Practices(最优的MVC布局)

    Best MVC Practices 最优的MVC布局策略 Model View Controller 1.数据层 2.视图层 3.控制器层 Although Model-View-Controlle ...

  3. Game Development Patterns and Best Practices (John P. Doran / Matt Casanova 著)

    https://github.com/PacktPublishing/Game-Development-Patterns-and-Best-Practices https://github.com/m ...

  4. jmeter Best Practices

    性能测试最佳实践之JMeter 16. Best Practices 16.1 Always use latest version of JMeter The performance of JMete ...

  5. .NET Best Practices

    Before starting with best practices tobe followed, it is good to have clear understanding of how mem ...

  6. What is Web Application Architecture? How It Works, Trends, Best Practices and More

    At Stackify, we understand the amount of effort that goes into creating great applications. That’s w ...

  7. 12c Data guard Switchover Best Practices using SQLPLUS (Doc ID 1578787.1)

    12c Data guard Switchover Best Practices using SQLPLUS (Doc ID 1578787.1) APPLIES TO: Oracle Databas ...

  8. 11.2 Data Guard Physical Standby Switchover Best Practices using SQL*Plus (Doc ID 1304939.1)

    11.2 Data Guard Physical Standby Switchover Best Practices using SQL*Plus (Doc ID 1304939.1) APPLIES ...

  9. C# Coding Conventions, Coding Standards & Best Practices

    C# Coding Conventions, Coding Standards & Best Practices Cui, Chikun Overview Introduction This ...

随机推荐

  1. C#比较两个对象是否为同一个对象。

    两个对象是否为同一个对象:是看两个对象是否指向堆中的同一块内存. 1.使用object.ReferenceEquals() class Program { static void Main(strin ...

  2. mysql Unknown error 1054

    mysql查询错误  Unknown error 1054 错误原因:字段名字不对应 解决方案:一一比对字段名称,令实体字段名称与数据库字段对应或者与你的sql语句中的别名对应起来

  3. 26.QT-模型视图之自定义委托

    在上一章学习 25.QT-模型视图 后,本章接着学习视图委托 视图委托(Delegate)简介 由于模型负责组织数据,而视图负责显示数据,所以当用户想修改显示的数据时,就要通过视图中的委托来完成 视图 ...

  4. 【Java每日一题】20170306

    20170303问题解析请点击今日问题下方的“[Java每日一题]20170306”查看(问题解析在公众号首发,公众号ID:weknow619) package Mar2017; public cla ...

  5. JavaScript是如何工作的:Web Workers的构建块 + 5个使用他们的场景

    摘要: 理解Web Workers. 原文:JavaScript是如何工作的:Web Workers的构建块 + 5个使用他们的场景 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 这 ...

  6. Visualization of Detail Point Set by Local Algebraic Sphere Fitting

    Refers to Dynamic Sampling and Rendering of Algebraic Point Set Surfaces Growing Least Squares for t ...

  7. <自动化测试方案_10>第十章、自动化测试部署策略

    第十章.自动化测试部署策略 按照以下顺序部署自动化框架 1,部署API自动化    时间:三周2,部署PC端UI自动化 时间:1个月 3,部署Sonar代码质量管理 时间:1个月 4,集成到Jenki ...

  8. (办公)百度api的使用

    这个只是入门,详细的还得看官方的文档http://lbsyun.baidu.com/index.php?title=jspopular3.0/guide/helloworld 百度地图的“Hello, ...

  9. XML 和 DTD

    1.XML 1.1xml简介 a)xml,eXtensible Markup Language,可扩展标记语言,是一种标记语言: b)xml是一种非常灵活的语言,没有固定的标签,所有的额标签都可以自定 ...

  10. BitnamiRedmine配置邮件系统备忘

    前几天安装的Redmine邮件系统存在问题,需要换一个,方法记录如下: 修改配置文件: cd ~/redmine/apps/redmine/htdocs/config vi configuration ...