快速数论变换NTT模板
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
#include <set>
const int maxlongint=2147483647;
const long long mo=100003;
const int N=300005;
using namespace std;
long long mod[2]={998244353,1004535809},M=mod[0]*mod[1];
long long f[N],g[N],f1[N],g1[N],h[22][N],W[2][N],ny;
int a[N],n,q;
long long poww(long long x,int y,int z)
{
long long s=1;
for(;y;y>>=1,x=x*x%mod[z])
if(y&1) s=s*x%mod[z];
return s;
}
long long mul(long long x,int y)
{
long long s=0;
for(;y;y>>=1,x=(x+x)%M)
if(y&1) s=(s+x)%M;
return s;
}
void NTT(long long *f,int len,int type,int z)
{
for(int i=0,p=0;i<len;i++)
{
if(i<p) swap(f[i],f[p]);
for(int j=len>>1;(p^=j)<j;j>>=1);
}
for(int i=2;i<=len;i<<=1)
{
int half=i>>1,pe=len/i;
for(int j=0;j<half;j++)
{
long long w=!type?W[z][pe*j]:W[z][len-pe*j];
for(int k=j;k<len;k+=i)
{
long long x=f[k],y=w*f[k+half]%mod[z];
f[k]=(x+y)%mod[z],f[k+half]=(x-y+mod[z])%mod[z];
}
}
}
if(type)
{
ny=poww(len,mod[z]-2,z);
for(int i=0;i<len;i++) f[i]=f[i]*ny%mod[z];
}
}
long long CRT(int i)
{
long long x0=poww(mod[1],mod[0]-2,0),x1=poww(mod[0],mod[1]-2,1);
return (mul(f[i]*mod[1]%M,x0%M)+mul(f1[i]*mod[0]%M,x1%M))%M%mo;
}
void dc(int l,int r,int deep)
{
if(l==r)
{
h[deep][0]=1,h[deep][1]=a[l]%mo;
return;
}
int mid=(l+r)>>1,fn;
for(fn=1;fn<=r-l+1;fn<<=1);
dc(l,mid,deep+1);
for(int i=0;i<fn;i++) h[deep][i]=h[deep+1][i],h[deep+1][i]=0;
dc(mid+1,r,deep+1);
W[0][0]=W[1][0]=1,W[0][1]=poww(3,(mod[0]-1)/fn,0),W[1][1]=poww(3,(mod[1]-1)/fn,1);
for(int i=2;i<=fn;i++) W[0][i]=W[0][i-1]*W[0][1]%mod[0],W[1][i]=W[1][i-1]*W[1][1]%mod[1];
for(int i=0;i<fn;i++) f[i]=f1[i]=g[i]=g1[i]=0;
for(int i=0;i<=mid-l+1;i++) f[i]=f1[i]=h[deep][i];
for(int i=0;i<fn;i++) h[deep][i]=0;
for(int i=0;i<=r-mid;i++) g[i]=g1[i]=h[deep+1][i];
for(int i=0;i<fn;i++) h[deep+1][i]=0;
NTT(f,fn,0,0),NTT(f1,fn,0,1);
NTT(g,fn,0,0),NTT(g1,fn,0,1);
for(int i=0;i<fn;i++) f[i]=f[i]*g[i]%mod[0],f1[i]=f1[i]*g1[i]%mod[1];
NTT(f,fn,1,0),NTT(f1,fn,1,1);
for(int i=0;i<fn;i++) h[deep][i]=CRT(i);
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
dc(1,n,0);
for(int x;q--;)
{
scanf("%d",&x);
printf("%lld\n",h[0][x]);
}
}
快速数论变换NTT模板的更多相关文章
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 【算法】快速数论变换(NTT)初探
[简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...
- 模板 - 数学 - 多项式 - 快速数论变换/NTT
Huffman分治的NTT,常数一般.使用的时候把多项式的系数们放进vector里面,然后调用solve就可以得到它们的乘积.注意这里默认最大长度是1e6,可能需要改变. #include<bi ...
- [快速数论变换 NTT]
先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...
- JZYZOJ 2041 快速数论变换 NTT 多项式
http://172.20.6.3/Problem_Show.asp?id=2041 https://blog.csdn.net/ggn_2015/article/details/68922404 代 ...
- 快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
随机推荐
- Linux就该这么学——新手必须掌握的命令之常用的系统工作命令
echo命令 含义:echo命令用于在终端输出字符串或变量提取后的值,格式为 : echo [字符串|$变量] 示例: 将”Linuxprobe.com”输出到终端屏幕的命令为: [root@linu ...
- Web安全微专业正式课 大纲(图片)
如果想报名学习,可以联系我.QQ:1097321785.
- Linux Permission denied 问题
Linux Permission denied 问题 来源 https://www.cnblogs.com/sparkdev/p/10287164.html 如果当前用户没有某个文件的写权限,又要通 ...
- 初识python之了解程序设计基本方法
对于用计算机解决一些问题,这里有一个程序设计的基本方法,主要分为六个步骤,其分析和实现过程如下: (1)分析问题:利用计算机解决问题需要结合计算机技术的发展水平和人类对问题的思考程度,在特定技术和社会 ...
- HTML5之动画优化(requestAnimationFrame)
定时器setInterval实现的匀速动画为什么不是匀速? window.requestAnimationFrame() 一.定时器setInterval实现的匀速动画为什么不是匀速? 以上提问并非通 ...
- Excel中把图片合并进图表的方法介绍
方法一: 使用“图案”对话框 双击某个数据系列,选择“图案”标签,单击“填充效果”按钮,在“填充效果”对话框中选择“图片”标签,单击“选择图片”按钮,选择一个要使用的图形文件即可. 方法二: 使用剪贴 ...
- ONNX源码安装
ONNX是facebook提出的一个 Open Neural Network Exchange协议,能够让训练好的模型在不同的框架间进行交互. ONNX的安装相对来说不是特别麻烦,麻烦的是其依赖库的安 ...
- jeesite表字段太多导致不能自动生成那张表的代码——————jetty 之 form too large | form too many keys 异常
看了Jetty的源码才发现,jetty限制了Form提交数据的大小,该源码类来自jetty lib库下的jetty-server-7.6.16.v20140903.jar包下的 org.eclipse ...
- HWADDR配置错误导致network重启失败处理
如果因为/etc/sysconfig/network-scripts/下的ifcfg-eth0(此处以eth0网卡名为例),其中的HWADDR配置错误,不知道到哪里找到原来的HWADDR时,可以尝试一 ...
- springboot项目logback.xml或者logback-spring.xml中读取不到application.yml或application.properties配置文件中的配置解决办法
在springboot项目中我们可能想要实现不同环境的日志项目配置不同,比如我想让不同环境的日志路径不同. 这时候我们很容易想: 1.到将日志路径配置在springboot的:application- ...