Coprime Arrays

CodeForces - 915G

Let's call an array a of size n coprime iff gcd(a1, a2, ..., a**n) = 1, where gcd is the greatest common divisor of the arguments.

You are given two numbers n and k. For each i (1 ≤ i ≤ k) you have to determine the number of coprime arrays a of size n such that for every j (1 ≤ j ≤ n) 1 ≤ a**j ≤ i. Since the answers can be very large, you have to calculate them modulo 109 + 7.

Input

The first line contains two integers n and k (1 ≤ n, k ≤ 2·106) — the size of the desired arrays and the maximum upper bound on elements, respectively.

Output

Since printing 2·106 numbers may take a lot of time, you have to output the answer in such a way:

Let b**i be the number of coprime arrays with elements in range [1, i], taken modulo 109 + 7. You have to print , taken modulo 109 + 7. Here denotes bitwise xor operation (^ in C++ or Java, xor in Pascal).

Examples

Input

3 4

Output

82

Input

2000000 8

Output

339310063

Note

Explanation of the example:

Since the number of coprime arrays is large, we will list the arrays that are non-coprime, but contain only elements in range [1, i]:

For i = 1, the only array is coprime. b1 = 1.

For i = 2, array [2, 2, 2] is not coprime. b2 = 7.

For i = 3, arrays [2, 2, 2] and [3, 3, 3] are not coprime. b3 = 25.

For i = 4, arrays [2, 2, 2], [3, 3, 3], [2, 2, 4], [2, 4, 2], [2, 4, 4], [4, 2, 2], [4, 2, 4], [4, 4, 2] and [4, 4, 4] are not coprime. b4 = 55.

题意:

给你一个整数n和k,

问你长度为n的整数数组中,每一个元素a[i] 要求满足\(a[i]<=k\),即最大值为k

b[i] = 最大值为i(即数组中每一个元素\(a[j]<=i\)),满足条件的数组种类个数。

让你输出

思路:

根据莫比乌斯反演,可以得到

但是我们需要求的是b1到bk而不是单独的一个bi,这是最重要的一个性质。

所以我们考虑\(b[i+1]\)和\(b[i]\)的关系,

\(b[i+1]=Σ[d|k] μ(d)*((k/d)^n-(k/d-1)^n)+b[i]\)

然后差分,求\(f[i]=b[i+1]-b[i]\)

计算答案的时候求一个前缀和即可,

记得\(i^n\) 要预处理出来降低时间复杂度。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 2000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
#define N maxn
bool vis[N];
long long prim[N], mu[N], sum[N], cnt;
void get_mu(long long n)
{
mu[1] = 1;
for (long long i = 2; i <= n; i++) {
if (!vis[i]) {mu[i] = -1; prim[++cnt] = i;}
for (long long j = 1; j <= cnt && i * prim[j] <= n; j++) {
vis[i * prim[j]] = 1;
if (i % prim[j] == 0) { break; }
else { mu[i * prim[j]] = -mu[i]; }
}
}
for (long long i = 1; i <= n; i++) { sum[i] = sum[i - 1] + mu[i]; }
}
ll n, k;
ll b[maxn];
const ll mod = 1e9 + 7ll;
ll f[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
get_mu(maxn - 1);
cin >> n >> k;
cout<<mu[2]<<endl;
repd(i, 0, k) {
ll cnt = powmod(1ll * i, n, mod);
b[i] = cnt;
}
ll ans = 0ll;
ll ANS = 0ll;
repd(i, 1, k) {
for (int j = i; j <= k; j += i) {
f[j] += mu[i] * (b[j / i] - b[j / i - 1]) % mod;
f[j] = (f[j] + mod) % mod;
}
// chu(f[i]);
ans = (ans + (f[i] )) % mod;
ANS = (ANS + (ans ^ i)) % mod;
}
cout << ANS << endl;
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分的更多相关文章

  1. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演

    [题目]G. Coprime Arrays [题意]当含n个数字的数组的总gcd=1时认为这个数组互质.给定n和k,求所有sum(i),i=1~k,其中sum(i)为n个数字的数组,每个数字均< ...

  2. Codeforces 915 G Coprime Arrays

    Discipntion Let's call an array a of size n coprime iff gcd(a1, a2, ..., an) = 1, where gcd is the g ...

  3. Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)

    Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...

  4. CF915G Coprime Arrays 莫比乌斯反演、差分、前缀和

    传送门 差分是真心人类智慧--完全不会 这么经典的式子肯定考虑莫比乌斯反演,不难得到\(b_k = \sum\limits_{i=1}^k \mu(i) \lfloor\frac{k}{i} \rfl ...

  5. Codeforces 479E Riding in a Lift:前缀和/差分优化dp

    题目链接:http://codeforces.com/problemset/problem/479/E 题意: 有一栋n层的房子. 还有一个无聊的人在玩电梯,每次玩电梯都会从某一层坐到另外一层. 他初 ...

  6. Educational Codeforces Round 36 (Rated for Div. 2) G. Coprime Arrays

    求a_i 在 [1,k]范围内,gcd(a_1,a_2...,a_n) = 1的a的数组个数. F(x)表示gcd(a_1,a_2,...,a_n) = i的a的个数 f(x)表示gcd(a_1,a_ ...

  7. Gym - 101982B Coprime Integers (莫比乌斯反演)

    题目链接:http://codeforces.com/gym/101982/attachments 题目大意:有区间[a,b]和区间[c,d],求gcd(x,y)=1,其中x属于[a,b],y属于[c ...

  8. hdu 4746 Mophues 莫比乌斯反演+前缀和优化

    Mophues 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m) 有Q组数据:(n, m, ...

  9. F. Coprime Subsequences 莫比乌斯反演

    http://codeforces.com/contest/803/problem/F 这题正面做了一发dp dp[j]表示产生gcd = j的时候的方案总数. 然后稳稳地超时. 考虑容斥. 总答案数 ...

随机推荐

  1. SQL中有关DQL、DML、DDL、DCL的概念与区别?

    SQL(Structure Query Language)结构化查询语言是数据库的核心语言,是高级的非过程化编程语言.它功能强大,效率高,简单易学易维护.SQL语言基本上独立于数据库本身.使用的机器. ...

  2. 前端JS之HTML利用XMLHttpRequest()和FormData()进行大文件分段上传

    用于网页向后端上传大文件 ### 前端代码<body> <input type="file" name="video" id="fi ...

  3. jquery设置input不可编辑,背景变灰,鼠标变禁止

    先看效果 $("#id").attr("onfocus", "this.blur()"); $("#id").css(& ...

  4. Docker 安装 Tomcat

    查找Docker Hub上的tomcat镜像 docker search tomcat 取官方的镜像 docker pull tomcat 使用tomcat镜像 创建目录tomcat,用于存放后面的相 ...

  5. Design In-Memory File System

    Design an in-memory file system to simulate the following functions: ls: Given a path in string form ...

  6. HanLP-基于HMM-Viterbi的人名识别原理介绍

    Hanlp自然语言处理包中的基于HMM-Viterbi处理人名识别的内容大概在年初的有分享过这类的文章,时间稍微久了一点,有点忘记了.看了 baiziyu 分享的这篇比我之前分享的要简单明了的多.下面 ...

  7. Spark Scala当中reduceByKey的用法

    [学习笔记] /*reduceByKey(function)reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行function的reduce操作(如前所述),因此,Ke ...

  8. MySQL中的左连接遇到的坑

    参考地址:https://blog.csdn.net/feichangwurao/article/details/89526741 待研究整理中.....

  9. DISCO Presents Discovery Channel Code Contest 2020 Qual Task E. Majority of Balls

    Not able to solve this problem during the contest (virtual participation). The first observation is ...

  10. 深入理解C++11 C3

    继承构造函数 class A { public: A(int i):m_i(i) {} A(double d, int i):m_d(d),m_i(i){} private: int m_i{0}; ...