小象和老鼠 DP
小象和老鼠 DP
\(N*M\)的网格图,格子\((i,j)\)有\(A_{i,j}\)个老鼠,问小象从左上角\((1,1)\)走到右下角\((N,M)\)看到的最少老鼠。小象可以看见老鼠,当且仅当老鼠的位置\((x2,y2)\)满足\(|x1-x2|+|y1-y2|\le1\)。
比较有意思的一道DP题,还是比较简单。我们发现如果直接设\(f[i][j]\)跑会导致一些格子重复计算,所以我们可以设\(f[i][j][0]\)表示到位置\((i,j)\)时最少看到的老鼠数量,并且当前状态是从上面转移而来的,\(f[i][j][1]\)表示到位置\((i,j)\)时最少看到的老鼠数量,并且当前状态是从左面转移而来的,这样我们便可以获得决策所需要的全部条件,从而避免重复计算。
转移方程看着图写就好了
//f[i][j][0]当前状态从上面转移而来
f[i][j][0]=min(f[i-1][j][1]+mp[i][j+1]+mp[i+1][j], f[i][j][0]);
f[i][j][0]=min(f[i-1][j][0]+mp[i+1][j]+mp[i][j-1]+mp[i][j+1], f[i][j][0]);
//f[i][j][0]当前状态从左面转移而来
f[i][j][1]=min(f[i][j-1][1]+mp[i][j+1]+mp[i-1][j]+mp[i+1][j], f[i][j][1]);
f[i][j][1]=min(f[i][j-1][0]+mp[i][j+1]+mp[i+1][j], f[i][j][1]);
完整代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 1010
using namespace std;
int f[MAXN][MAXN][2],mp[MAXN][MAXN];
int n,m;
int calc(int x, int y){
int res=0;
if(x+1>=1&&x+1<=n) res+=mp[x+1][y];
if(x-1>=1&&x-1<=n) res+=mp[x-1][y];
if(y+1>=1&&y+1<=m) res+=mp[x][y+1];
if(y-1>=1&&y-1<=m) res+=mp[x][y-1];
return res+mp[x][y];
}
int main(){
scanf("%d %d", &n, &m);
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
f[i][j][0]=f[i][j][1]=0x3f3f3f3f;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
scanf("%d", &mp[i][j]);
f[1][1][0]=f[1][1][1]=calc(1, 1);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j){
//f[i][j][0]当前状态从上面转移而来
f[i][j][0]=min(f[i-1][j][1]+mp[i][j+1]+mp[i+1][j], f[i][j][0]);
f[i][j][0]=min(f[i-1][j][0]+mp[i+1][j]+mp[i][j-1]+mp[i][j+1], f[i][j][0]);
//f[i][j][0]当前状态从左面转移而来
f[i][j][1]=min(f[i][j-1][1]+mp[i][j+1]+mp[i-1][j]+mp[i+1][j], f[i][j][1]);
f[i][j][1]=min(f[i][j-1][0]+mp[i][j+1]+mp[i+1][j], f[i][j][1]);
}
printf("%d", min(f[n][m][0], f[n][m][1]));
return 0;
}
这是校内模拟赛做的一道题,一开始以为是道DP签到题导致思路都错了,后面静下心慢慢分析决策才想出正解,可见手推样例重要性。另外一定不要轻敌。
小象和老鼠 DP的更多相关文章
- hdu2067 小兔的棋盘 DP/数学/卡特兰数
棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...
- 【BZOJ-3174】拯救小矮人 贪心 + DP
3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 686 Solved: 357[Submit][Status ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 洛谷 P3672 小清新签到题 [DP 排列]
传送门 题意:给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列 $n \le 300, k \le 10^13$ 一下子想到hzc讲过的DP 从小到大插入,后插入不会对前插 ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- 洛谷 p1164 小A点菜 【dp(好题)】 || 【DFS】 【恰好完全装满】
题目链接:https://www.luogu.org/problemnew/show/P1164 题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种. u ...
- 洛谷 P1164:小A点菜(DP/DFS)
题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家--餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:"随便点". 题目描述 不过ui ...
- BZOJ 3174 拯救小矮人(贪心+DP)
题意 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚到肩 ...
- [TJOI2013]拯救小矮人[排序+dp]
题意 题目链接 分析 Imagine的完美回答 重点大概是证明我们选出要救的小矮人一定可以根据 \(a_i+b_i\) 的大小进行排序救出. 注意这里关注的对象是可以保留的高度,所以我们的dp值才会表 ...
随机推荐
- ASP.net Web API综合示例
目录 概述 功能介绍 程序结构 服务器端介绍 客户端介绍 “契约” Web API设计规则 并行写入冲突与时间戳 身份验证详解 Web API验证规则 客户端MVVM简介 Web.Config 本DE ...
- 括号匹配问题 —— Deque双端队列解法
题目: 给定一个只包括 '(',')','{','}','[',']'?的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合.左括号必须以正确的顺序闭合.注意空字符串可 ...
- shell 学习笔记5-shell-if语句
一.if条件语句 1.语法 1)单分支结构 第一种 if <条件表达式> then 指令 fi 第二种 if <条件表达式>:then 指令 fi 上文的"<条 ...
- html启动本地.exe文件
之前没有了解这个内容,还是一个小伙伴在面试中遇到的一个题目,感觉挺有意思就研究了一下这个东西到底是怎么用的.搜了一下解决方法,是添加注册表,自己运行了可以使用 第一步:首先打开注册表,方法是 win+ ...
- 字符串replace的理解和练习和配合正则表达式的使用
下面代码展示了(demo地址 https://codepen.io/peach_/pen/jONJjRY): 1.字符串replace的理解和练习和配合正则表达式的使用, 2.正则表达式学习 3.通过 ...
- vue的data里面的值是数组时,在更改其某一项的时候,怎么触发视图的重新渲染?
1. 设置对象或数组的值:Vue.set(target,key,value) :2.删除对象或数组中元素: Vue.delete ( target,key) ;3. 数组对象直接修改属性,可以触发视图 ...
- Java 之 缓冲流
一.缓冲流概述 缓冲流,也叫高效流,是对四个 FileXXX 流的增强,所有也有四个流,按照类型分类: 字节缓冲流:BufferedInputStream,BufferedOutputStream 字 ...
- SpringBoot Kafka 整合集成 示例教程
1.使用IDEA新建工程,创建工程 springboot-kafka-producer 工程pom.xml文件添加如下依赖: <!-- 添加 kafka 依赖 --> <depend ...
- 开源框架---tensorflow c++ API 一个卡了很久的问题
<开源框架---tensorflow c++ API 运行第一个“手写字的例子”> 中可以说明tensorflow c++ API是好用的,.......
- 用Xcode配置完美ACMer环境
用Xcode配置完美ACMer环境 前言 作为\(ACMer\),需求大致为强大的文本编辑功能\((VIM)\),便捷的文件模版功能以及多文件编译功能.\(vscode\)虽然强大,但是与集成\( ...