题目来源:洛谷

题目描述

监狱有连续编号为 1…N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入输出格式

输入格式:

输入两个整数 M,N

输出格式:

可能越狱的状态数,模 100003取余

输入输出样例

输入样例#1:

2 3
输出样例#1:

6

说明

6种状态为(000)(001)(011)(100)(110)(111)

1≤M≤10^8
1≤N≤10^12

解析:

这道题需要一些组合数学基础,没学过的出门右转。

我们根据稍微的组合数学基础容易知道,按照题意,总共有m^n 种犯人的组合。

如果我们要从正面突破这道题比较复杂,不如我们逆向思维想一下,是不是可以求出不会发生越狱的状态(当然是因为它好算),再用可能组合总数减去它得到答案?

首先,我们知道之前的m^n是由这样一个情形推导出来的:

由于每个牢房可以有m种宗教状态,方法总数就是m^n:

1 2 3 ... n
m m m ... m

而我们知道,如果相邻的两个犯人的宗教相同,就会发生越狱,所以如果相邻两个犯人的宗教不同,也就是除了某一个犯人,其它任意相邻的两个犯人都只能信仰m-1种宗教(那个特殊的犯人占了一种),否则就会发生越狱。

所以不会越狱的方案总数就是m*(m-1)^(n-1)。

1 2 3 ... n
m m-1 m-1 ... m-1

参考代码:

注意这里有一个魔幻的取模。

 #include<cstdio>
#include<iostream>
#include<cmath>
#define mod 100003
#define ll long long
using namespace std;
inline ll read()
{
ll f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
inline ll power(ll a,ll b,int p)
{
ll ans=%p;
for(;b;b>>=){
if(b&) ans=(ll)ans*a%p;
a=(ll)a*a%p;
}
return ans;
}
int main()
{
ll n,m;
m=read(),n=read();
ll ans=(power(m,n,mod)%mod-m*power(m-,n-,mod)%mod)%mod;
printf("%lld",(ans%mod+*mod)%mod);
return ;
}

P3197 [HNOI2008]越狱[组合数学]的更多相关文章

  1. 洛谷 P3197 [HNOI2008]越狱 题解

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...

  2. 洛谷 P3197 [HNOI2008]越狱 解题报告

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...

  3. bzoj1008 / P3197 [HNOI2008]越狱

    P3197 [HNOI2008]越狱 考虑所有状况:显然是$m^{n}$ 考虑所有不合法状况: 显然相邻两个数不相等 那么后面$n-1$个数就有$(m-1)^{n-1}$种取法 第一个数前面没有相邻的 ...

  4. 洛谷P3197 HNOI2008 越狱

    题目传送门 实际上昨天大鸡哥已经讲过这题了,结果没记住,今天一道相似的题就挂了......吃一堑长一智啊. 思路大致是这样:如果直接算发生越狱的情况会比较复杂,所以可以用间接法,用安排的总方案-不会发 ...

  5. P3197 [HNOI2008]越狱

    题目描述 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 输入输出格式 输入 ...

  6. BZOJ 1008: [HNOI2008]越狱 组合数学

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1008 题解: 就很傻逼的组合数学啊... $$ans=M^N-M*(M-1)^{(N-1) ...

  7. [HNOI2008]越狱 (组合数学)

    题目描述 监狱有连续编号为 1-N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱. 输入输出 ...

  8. luogu P3197 [HNOI2008]越狱

    构造长度为n的串,给定m种颜色,求使得相邻两位的颜色相同的方案数 显然可以看出长度为n的串染m种颜色的总方案数为$m^{n}$ 然后来考虑相邻两位颜色不同的方案 对于第一位,有m种选择 对于剩余的n- ...

  9. [BZOJ1008][HNOI2008]越狱 组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 正着直接算有点难,我们考虑反着来,用全集减补集. 总的方案数为$m^n$.第一个人有$m$种可 ...

随机推荐

  1. 【VS开发】windows下的signal

    在windows下,信号机制简单来说是通过工作线程实现的,该线程运行于相对优先级THREAD_PRIORITY_HIGHEST,当信号产生时,windows生成该线程执行信号处理逻辑,由于该线程优先级 ...

  2. Select 查询语句

    1.1  查询语句 1.1.1     select select 用于从数据看查询数据.语法 select field1,filed2,.. . from tablename [where cond ...

  3. Qt qml的软件架构设计

    google: qt qml application architecture 有很多资源. 1 https://www.ics.com/blog/multilayered-architecture- ...

  4. poj1228(稳定凸包+特判最后一条边)

    题目链接:https://vjudge.net/problem/POJ-1228 题意:我是真的没看懂题意QAQ...搜了才知道.题目给了n个点,问这n个点确定的凸包是否能通过添加点来变成一个新的凸包 ...

  5. 020 Android 常用颜色对应表

    1.Android colors.xml常用颜色汇总 <?xml version="1.0" encoding="utf-8"?> <reso ...

  6. MySQL常用的系统函数

    MySQL常用的系统函数 2019年01月17日 17:49:14 pan_junbiao 阅读数 155    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csd ...

  7. 剑指offer55:链表中环的入口结点

    1 题目描述 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null. 2 思路和方法 这是一个典型的链表中查找环的问题,基本思路是,首先设置两个快慢指针slow和fast,并且快指 ...

  8. PHP get和post向服务器发送请求

    1 .get请求 <?php //请求url地址 $token="xxx"; $url = "请求的地址"; //初始化curl $ch = curl_i ...

  9. Windows Subsystem for Linux(wsl)使用

    由于项目有一些环境需要在linux环境运行.可用微软win10的WSL来搭配使用 安装wsl 控制面板--程序和功能--启用或关闭windows功能,适用于linux的windows系统 应用商城下载 ...

  10. python正则表达式findall的使用

    文章来源与:http://www.cnblogs.com/zjltt/p/6955965.html 正则表达式 正则表达式本身是一种小型的.高度专业化的编程语言,而在python中,通过内嵌集成re模 ...