一道结论题:如果最小生成树和最大生成树之间存在fib数,成立。不存在或者不连通则不成立。由于是01图,所以这个区间内的任何生成树都存在

证明:数学归纳?如果一棵树没有办法再用非树边0边替代1边了,那他就是最小生成树。如果一棵生成树大于最小生成树,那么他显然存在可以被替换的1边,否则会与最小矛盾。最大生成树存在(与最小生成树相等时显然结论成立),那么他一定可以有可以替换的边,所以所有区间内的生成树都存在。

吐槽:我一开始以为要依据fib的性质合并块。。研究好久。。冏。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+;
struct thxorz{int u,v,w;}e[N];
struct stothx{int nxt,to;}G[N<<];
int Head[N],tot;
inline void Addedge(int x,int y){
G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot;
G[++tot].to=x,G[tot].nxt=Head[y],Head[y]=tot;
}
int vis[N];
void dfs(int x){
vis[x]=;
for(register int j=Head[x];j;j=G[j].nxt)if(!vis[G[j].to])dfs(G[j].to);
}
int T,n,m,minst,maxst,flag;
struct dsu{
int anc[N];
inline void Clear(){for(register int i=;i<=n;++i)anc[i]=i;}
inline int Find(int x){return anc[x]==x?x:anc[x]=Find(anc[x]);}
}S;
int fib[]={,,,,,,,,,,,,,,,,,,,,,,,,};// int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(T);for(register int testcase=;testcase<=T;++testcase){
read(n),read(m);minst=maxst=flag=;
memset(Head,,sizeof Head);tot=;
for(register int i=;i<=m;++i)read(e[i].u),read(e[i].v),read(e[i].w),Addedge(e[i].u,e[i].v);
memset(vis,,sizeof vis);dfs();
for(register int i=;i<=n;++i)if(!vis[i]){flag=;break;}
if(flag){printf("Case #%d: No\n",testcase);continue;}
S.Clear();
for(register int i=;i<=m;++i)if(!e[i].w)if(S.Find(e[i].u)^S.Find(e[i].v))
S.anc[S.anc[e[i].u]]=S.anc[e[i].v];
for(register int i=;i<=m;++i)if(e[i].w)if(S.Find(e[i].u)^S.Find(e[i].v))
S.anc[S.anc[e[i].u]]=S.anc[e[i].v],++minst;
S.Clear();
for(register int i=;i<=m;++i)if(e[i].w)if(S.Find(e[i].u)^S.Find(e[i].v))
S.anc[S.anc[e[i].u]]=S.anc[e[i].v],++maxst;
for(register int i=;i<=m;++i)if(!e[i].w)if(S.Find(e[i].u)^S.Find(e[i].v))
S.anc[S.anc[e[i].u]]=S.anc[e[i].v];
int x=lower_bound(fib+,fib+,minst)-fib;
if(maxst>=fib[x])printf("Case #%d: Yes\n",testcase);
else printf("Case #%d: No\n",testcase);
}
return ;
}

总结:做生成树问题没有什么其他方法,所以还是最好多往MST上去想。。

hdu4786 Fibonacci Tree[最小生成树]【结论题】的更多相关文章

  1. HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...

  2. hdu4786 Fibonacci Tree (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给定图的n个点和m条双向边,告诉你每条边的权值.权值为1表示该边是白边,权值为0表示该边为 ...

  3. 【最小生成树】【kruscal】hdu4786 Fibonacci Tree

    假设这张图能够形成具有k条白边的生成树, 则易证k一定形成一个连续的区间[a,b],中间一定不会断开.要是断开……tm怎么可能. 所以求出a,b就好啦,人家都给你把白边赋成1了,直接跑一下最小生成树, ...

  4. hdoj 4786 Fibonacci Tree【并查集+最小生成树(kruskal算法)】

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. Fibonacci Tree(最小生成树,最大生成树)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. hdu 4786 Fibonacci Tree(最小生成树)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  7. HDU 4786 Fibonacci Tree (2013成都1006题)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. POJ 4786 Fibonacci Tree

    Fibonacci Tree Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ...

  9. HDU 4786 Fibonacci Tree

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) P ...

随机推荐

  1. 最新 完美世界java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.完美世界等10家互联网公司的校招Offer,因为某些自身原因最终选择了完美世界.6.7月主要是做系统复习.项目复盘.Leet ...

  2. TP5 生成数据库字段 和 路由 缓存来提升性能

    关于使用tp5框架如何提升部分性能,框架中很多影响性能的问题在于,很多请求都要重新加载,如果能避免过度加载的问题,就能提升部分性能,所以我们通过缓存来实现这一功能,具体如下. 首先说明 如果是linu ...

  3. eNSP——VLAN基础配置和Access

    原理: 早期的局域网技术是基于总线型的结构,也就是说所有主机共享一条传输线路.这就带来了很多问题:冲突域和安全问题.为了避免冲突域,我们使用二层交换机.但想想,一台计算机在总线上传输数据的时候,所有计 ...

  4. [转帖]Linux-Windows 端口转发 netsh 还有 rinetd

    Linux-Windows 端口转发 https://www.cnblogs.com/operationhome/p/11284559.html 之前自己学习过 netsh 也曾经用过frp 这次学习 ...

  5. Oracle表级约束和列级约束

    Oracle表级约束和列级约束 1. 表级定义约束 指的是在定义完一个表所有列之后,再去定义所有相关的约束. 注意:not null 约束只能在列级上定义. 2. 列级定义约束 指的是在定义一个表的每 ...

  6. Java模版引擎之Freemarker

    Java模版引擎之Freemarker freemarker是一款模版引擎,是一种基于模版生成静态文件的通用工具,它是为Java程序员提供的一个类库,它不是面向最终用户的,而是为程序员提供了一款可以嵌 ...

  7. SpringBoot 项目如何在tomcat容器中运行

    一. SpringBoot内嵌容器的部署方式 SpringBoot内部默认提供内嵌的tomcat容器,所以可以直接打成jar包,丢到服务器上的任何一个目录,然后在当前目录下执行java -jar de ...

  8. HDU 4578 线段树玄学算法?

    Transformation 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is p ...

  9. HDU 3333-Turing Tree-线段树+离散+离线

    Description After inventing Turing Tree, 3xian always felt boring when solving problems about interv ...

  10. ASP.NET 中的 Session 怎么正确使用

    Session对象用于存储从一个用户开始访问某个特定的aspx的页面起,到用户离开为止,特定的用户会话所需要的信息.用户在应用程序的页面切换时,Session对象的变量不会被清除. 对于一个Web应用 ...