LibreOJ真是吼啊!

数码

推个式子,把枚举因数转为枚举倍数。然后就发现它是根号分段的。然后每一段算一下就好了。

 #include <cstdio>
#include <cstring> #define R register
typedef long long ll;
struct Data {
ll num[];
inline void clear()
{
memset(num, , << );
}
inline Data operator + (const Data &that) const
{
R Data ret; memcpy(ret.num, num, << );
for (R int i = ; i <= ; ++i) ret.num[i] += that.num[i];
return ret;
}
inline void operator += (const Data &that)
{
for (R int i = ; i <= ; ++i) num[i] += that.num[i];
}
inline Data operator - (const Data &that) const
{
R Data ret; memcpy(ret.num, num, << );
for (R int i = ; i <= ; ++i) ret.num[i] -= that.num[i];
return ret;
}
inline void operator *= (const int &that)
{
for (R int i = ; i <= ; ++i) num[i] *= that;
}
} ;
inline Data calc2(R int N)
{
R ll tmp; R Data ret; ret.clear();
for (tmp = ; tmp - <= N; tmp *= )
for (R int i = ; i <= ; ++i)
ret.num[i] += tmp / ;
tmp /= ;
for (R int i = ; i < (N / tmp); ++i) ret.num[i] += tmp;
ret.num[N / tmp] += N % tmp + ;
// printf("calc2(%d) = \n", N);
// for (R int i = 1; i <= 9; ++i) printf("%lld\n", ret.num[i]);
return ret;
}
inline Data calc(R int N)
{
R Data ret; ret.clear();
for (R int i = , j; i <= N; i = j + )
{
j = N / (N / i);
R Data tmp = calc2(j) - calc2(i - );
tmp *= N / i;
ret += tmp;
}
return ret;
}
int main()
{
R int l, r; scanf("%d%d", &l, &r);
R Data ans = calc(r) - calc(l - );
for (R int i = ; i <= ; ++i)
printf("%lld\n", ans.num[i]);
return ;
}

数码

跳格子

预处理出每个点能不能到终点。然后直接暴搜就好了。

 #include <cstdio>
#include <cstdlib> #define R register
#define maxn 100010
struct Edge {
Edge *next;
int to;
} *last[maxn], e[maxn << ], *ecnt = e;
inline void link(R int a, R int b)
{
*++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
}
int q[maxn], n, a[maxn], b[maxn];
bool arv[maxn], ins[maxn];
char st[maxn];
void dfs(R int x, R int step)
{
if (!arv[x]) return ;
if (x == n)
{
for (R int i = ; i < step; ++i) printf("%c", st[i]); puts("");
exit();
}
if (ins[x])
{
puts("Infinity!");
exit();
}
ins[x] = ;
if (x + a[x] > && x + a[x] <= n)
{
st[step] = 'a';
dfs(x + a[x], step + );
}
if (x + b[x] > && x + b[x] <= n)
{
st[step] = 'b';
dfs(x + b[x], step + );
}
}
int main()
{
scanf("%d", &n);
for (R int i = ; i <= n; ++i) scanf("%d", a + i), i + a[i] > && i + a[i] <= n ? link(i + a[i], i), : ;
for (R int i = ; i <= n; ++i) scanf("%d", b + i), i + b[i] > && i + b[i] <= n ? link(i + b[i], i), : ;
R int head = , tail = ; arv[q[] = n] = ;
while (head < tail)
{
R int now = q[++head];
for (R Edge *iter = last[now]; iter; iter = iter -> next)
if (!arv[iter -> to]) arv[q[++tail] = iter -> to] = ;
}
if (!arv[]) {puts("No solution!"); return ;}
dfs(, );
return ;
}

跳格子

优惠券

一开始傻逼了,以为只要前缀就好了,后来才发现是区间。。。对于每个不满足的条件的左/右括号扔进一个数据结构里,然后每次遇到问号的时候,去消右端点最近的一个括号。然后这个数据结构用堆就够啦~

 #include <cstdio>
#include <vector>
#include <queue> #define R register
#define maxn 500010
int last[maxn], lastt[maxn];
struct Opt {int type, x;} p[maxn];
std::vector<int> v[maxn];
std::priority_queue<int, std::vector<int>, std::greater<int> > q;
int main()
{
R int n, num = ; scanf("%d", &n);
for (R int i = ; i <= n; ++i)
{
char opt[]; scanf("%s", opt);
if (opt[] == 'I')
{
R int x; scanf("%d", &x);
p[i] = (Opt) {, x};
}
if (opt[] == 'O')
{
R int x; scanf("%d", &x);
p[i] = (Opt) {, x};
}
if (opt[] == '?') p[i] = (Opt) {, };
}
for (R int i = ; i <= n; ++i)
{
if (p[i].type == ) continue;
if (lastt[p[i].x] == p[i].type)
{
v[last[p[i].x]].push_back(i);
}
last[p[i].x] = i;
lastt[p[i].x] = p[i].type;
}
for (R int i = ; i < v[].size(); ++i) q.push(v[][i]);
for (R int i = ; i <= n; ++i)
{
for (R int j = ; j < v[i].size(); ++j) q.push(v[i][j]);
if (p[i].type == && !q.empty())
{
R int top = q.top(); q.pop();
if (top < i) return !printf("%d\n", top);
}
}
if (q.empty()) puts("-1");
else printf("%d\n", q.top());
return ;
}

优惠劵

「美团 CodeM 资格赛」试题泛做的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「美团 CodeM 资格赛」跳格子

    题目描述 nnn 个格子排成一列,一开始,你在第一个格子,目标为跳到第 n 个格子.在每个格子 i 里面你可以做出两个选择: 选择「a」:向前跳 ai​​ 步. 选择「b」:向前跳 bi 步. 把每步 ...

  3. LOJ#6085. 「美团 CodeM 资格赛」优惠券(set)

    题意 题目链接 Sol 考虑不合法的情况只有两种: 进去了 再次进去 没进去 但是出来了 显然可以用未知记录抵消掉 直接开个set维护一下所有未知记录的位置 最优策略一定是最后一次操作位置的后继 同时 ...

  4. loj 6085.「美团 CodeM 资格赛」优惠券

    题目: 一个有门禁的大楼,初始时里面没有人. 现在有一些人在进出大楼,每个人都有一个唯一的编号.现在有他们进出大楼的记录,但是有些被污染了,只能知道这里有一条记录,具体并不能知道. 一个人只有进大楼, ...

  5. loj 6084.「美团 CodeM 资格赛」跳格子

    题目: link 题解: 尽量走\(a\). 只要保证走\(a\)后到达的点一定可以到终点就可以走. 所以从终点开始\(dfs\)出所有能够到达终点的点. 然后再从起点开始\(dfs\)路径即可. 如 ...

  6. loj 6083.「美团 CodeM 资格赛」数码

    题目: 给定两个整数\(l\)和\(r\),对于任意\(x\),满足\(l\leq x\leq r\),把\(x\)所有约数写下来. 对于每个写下来的数,只保留最高位的那个数码.求\([1,9]\)中 ...

  7. #6085. 「美团 CodeM 资格赛」优惠券

    题目描述 用last[x]表示对x进行的上一次操作的位置,vis[x]表示x是否在大楼内. Splay维护'?'的位置. 若x要进楼: 1.若x已在楼内,则去找last[x]到i之间是否有'?',若有 ...

  8. [LOJ 6213]「美团 CodeM 决赛」radar

    [LOJ 6213]「美团 CodeM 决赛」radar 题意 给定 \(n\) 个横坐标 \(x_i\) , 为它们选择一个不超过 \(y_i\) 的纵坐标 \(h_i\), 产生 \(c_ih_i ...

  9. LOJ #6192. 「美团 CodeM 复赛」城市网络 (树上倍增)

    #6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB 时间限制:500 ms 标准输入输出   题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接 ...

随机推荐

  1. UAV图像拼接软件编译环境配置

    1,需要下载的软件: 依次安装qt-opensource.addin qt安装目录为C:\Qt\4.8.6 2,vs2010配置 *配置UAVBeta工程的属性,下图黑色字体部分与qt相关,取决于你的 ...

  2. C# 使用Emit实现动态AOP框架 进阶篇之优化

    目  录 C# 使用Emit实现动态AOP框架 (一) C# 使用Emit实现动态AOP框架 (二) C# 使用Emit实现动态AOP框架 (三) C# 使用Emit实现动态AOP框架 进阶篇之异常处 ...

  3. Laravel 表单验证创建“表单请求”实现自定义请求类

    按照文档创建表单请求自定义类以后,调用总是403页面,咨询大佬说: public function authorize() { // 在表单验证类的这个方法这里要返回true,默认返回false,这个 ...

  4. string字符串长度和字节长度问题

    string str = "abcdef 安安安"; int i = str.Length; byte[] bt = System.Text.Encoding.Default.Ge ...

  5. linux 下vim 开发环境配置(通用所有编程语言)

    1.下载 http://www.iterm2.com/ 2.oh-my-zsh curl -L https://raw.github.com/robbyrussell/oh-my-zsh/master ...

  6. OGG学习笔记03

    OGG学习笔记03-单向复制简单故障处理 环境:参考:OGG学习笔记02-单向复制配置实例实验目的:了解OGG简单故障的基本处理思路. 1. 故障现象故障现象:启动OGG源端的extract进程,da ...

  7. vue项目图标

    项目图标iconfont 网址:http://www.iconfont.cn

  8. collections:内建模块,提供额外的集合类

    介绍 collections里面包含了很多除了内置类型之外的数据类型,我们使用它们有时可以很方便的完成一系列操作 ChainMap:搜索多个字典 from collections import Cha ...

  9. Go语言基础之操作MySQL

    Go语言操作MySQL MySQL是常用的关系型数据库,本文介绍了Go语言如何操作MySQL数据库. Go操作MySQL 连接 Go语言中的database/sql包提供了保证SQL或类SQL数据库的 ...

  10. Optimization Algorithms

    1. Stochastic Gradient Descent 2. SGD With Momentum Stochastic gradient descent with momentum rememb ...