[AcWing303]任务安排2

有 \(N\) 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变。机器会把这 \(N\) 个任务分成若干批,每一批包含连续的若干个任务。从时刻 \(0\) 开始,任务被分批加工,执行第 \(i\) 个任务所需的时间是 \(t[i]\) 。另外,在每批任务开始前,机器需要 \(S\) 的启动时间,故执行一批任务所需的时间是启动时间 \(S\) 加上每个任务所需时间之和。一个任务执行后,将在机器中稍作等待,直至该批任务全部执行完毕。也就是说,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数 \(c[i]\) 。请为机器规划一个分组方案,使得总费用最小。

\(1≤N≤3∗10^5\)

\(1≤S,Ti,Ci≤512\)

设 \(T[i]\) 为时间的前缀和 , \(C[i]\) 是系数 \(c\) 的前缀和 . 在一批任务开始对后续任务产生影响时,就先把费用累加到答案中. 这就是"费用提前计算"的思想 .

对于每一次转移, 有 \(chkmin(f[i], f[j] + (C[j] - C[i]) * T[i] + S * (C[n] - C[j]))\)

考虑到数据范围很像斜率优化 , 把式子转化为斜率优化的形式 :

\(f[j] = (S + T[i]) * C[j] - S * C[n] - T[i] * C[i] + f[i]\)

发现斜率是固定的 , 当截距最小时 \(f[i]\) 最小 . 所以要维护 \((C[j],f[j])\) 围成的下凸包 .

由于 \(f[j]\) 随 \(C[j]\) 单调递增 , \((S+T[i])\) 也是单调递增的 , 所以可以用单调队列维护 : 只保留两点间斜率 \(>=S+T[i]\) 的点 , 入队时检查有没有斜率递增

时间复杂度 \(O(n)\)

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int N = 3e5 + 5; int T[N], C[N], q[N], f[N];
int n, S; int main(){
n = read(), S = read();
for(int i = 1; i <= n; ++i){
T[i] = T[i-1] + read();
C[i] = C[i-1] + read();
}
int l = 1, r = 1;
q[1] = 0; // 把0入队是因为j取0是合法的.
for(int i = 1; i <= n; ++i){
while(l < r && ((f[q[l+1]] - f[q[l]]) <= (S + T[i]) * (C[q[l+1]] - C[q[l]]))) l++;
f[i] = f[q[l]] - (T[i] + S) * C[q[l]] + C[i] * T[i] + S * C[n];
while(l < r && ((f[q[r]] - f[q[r-1]]) * (C[q[i]] - C[q[r]]) >= (f[q[i]] - f[q[r]]) * (C[q[r]] - C[q[r-1]]))) r--;
q[++r] = i;
}
printf("%d\n", f[n]);
}

[AcWing304]任务安排3

\(1≤N≤3∗10^5 ; 0≤S,c[i]≤512 ; -512≤t[i]≤512\)

完成的时间可以为负数 , 则 \(S+T[i]\) 不再具有单调性 . 所以在单调队列中二分查找出对应的位置 , 不需要出队 , 但需要维护入队时的斜率单调性

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
#define int long long
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int N = 3e5 + 5; int f[N], q[N], T[N], C[N];
int n, S; inline int find(int L, int R, int x){
while(L < R){
int mid = (L + R) >> 1;
if((f[q[mid+1]] - f[q[mid]]) <= x * (C[q[mid+1]] - C[q[mid]])) L = mid + 1; ///
else R = mid;
}
return L;
} signed main(){
n = read(), S = read();
for(int i = 1; i <= n; ++i){
T[i] = T[i-1] + read();
C[i] = C[i-1] + read();
}
int l = 1, r = 1;
for(int i = 1; i <= n; ++i){
int p = find(l, r, S + T[i]);
f[i] = f[q[p]] - (S + T[i]) * C[q[p]] + S * C[n] + T[i] * C[i];
while(l < r && ((f[q[r]] - f[q[r-1]]) * (C[i] - C[q[r]]) >= (f[i] - f[q[r]]) * (C[q[r]] - C[q[r-1]]))) r--;
q[++r] = i;
}
printf("%lld\n", f[n]);
}

[AcWing303/304]任务安排2/3的更多相关文章

  1. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  2. Beta版本冲刺计划及安排

    经过紧张的Alpha阶段,很多组已经从完全不熟悉语言和环境,到现在能够实现初步的功能.下一阶段即将加快编码进度,完成系统功能.强化软件工程的体会.Beta阶段的冲刺时间为期七天,安排在2016.12. ...

  3. C语言 活动安排问题之二

    有若干个活动,第i个开始时间和结束时间是[Si,fi),活动之间不能交叠,要把活动都安排完,至少需要几个教室? #include <stdio.h> #include <string ...

  4. C语言 活动安排问题

    有若干个活动,第i个开始时间和结束时间是[Si,fi),只有一个教室,活动之间不能交叠,求最多安排多少个活动? #include <stdio.h> #include <stdlib ...

  5. hdu 2037简单贪心--活动安排问题

    活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子.该问题要求高效地安排一系列争用某一公共资源的活动.贪心算法提供了一个简单.漂亮的方法使得尽可能多的活动 ...

  6. 项目安排(离散化+DP)

    题目来源:网易有道2013年校园招聘面试二面试题 题目描述: 小明每天都在开源社区上做项目,假设每天他都有很多项目可以选,其中每个项目都有一个开始时间和截止时间,假设做完每个项目后,拿到报酬都是不同的 ...

  7. 1Z0-053 争议题目解析304

    1Z0-053 争议题目解析304 考试科目:1Z0-053 题库版本:V13.02 题库中原题为: 304.What privileges must be granted to allow an a ...

  8. [HTTP Protocol] 200 OK (from cache)和304 Not Modified

    含义 200 OK (from cache)直接从缓存中获取的内容并未请求服务器 304 Not Modified 请求服务器并和服务器比较 If-Modified-Since,若文件未改变,服务器返 ...

  9. 扼杀 304,Cache-Control: immutable

    随着近些年社交网站的流行,越来越多的人学会了“刷”网页 ── 刷微博,刷朋友圈,刷新闻,刷秒杀页.这里的“刷”,就是刷新的意思,在浏览器里,你可以通过点击刷新按钮,或者用快捷键,或者移动端的下拉操作来 ...

随机推荐

  1. Laravel学习笔记之PHP反射(Reflection) (上)

    Laravel学习笔记之PHP反射(Reflection) (上) laravel php reflect 2.1k 次阅读  ·  读完需要 80 分钟 3 说明:Laravel中经常使用PHP的反 ...

  2. BZOJ 2815: [ZJOI2012]灾难 拓扑排序+倍增LCA

    这种问题的转化方式挺巧妙的. Code: #include <bits/stdc++.h> #define N 100000 #define M 1000000 #define setIO ...

  3. 用ST解决RMQ问题

    用ST算法解决RMQ(区间最值问题) 在解决CF上的6E Exposition时,用到了RMQ+二分的方法.学习了用ST来快速解决RMQ问题,因此做一个小记 建表 用DP的方式来建ST. dp[i][ ...

  4. ACM之路(17)—— 博弈论

    博弈论这方面网上资料庞大,我觉得我不可能写的比他们好,就转载一下我觉得写的不错的博客好了. 首先是三大博弈:巴什博奕,威佐夫博奕,尼姆博奕.博客:三大基本博弈. 然后是强大的sg函数和sg定理:SG. ...

  5. SAE上配置Django静态文件

    很简单,步骤如下: 1.修改配置文件 setting.py 中的STATIC_ROOT为 '/static/' 2. 运行 python manage.py collectstatic , 将静态文件 ...

  6. 20191121-5 Scrum立会报告+燃尽图 02

    此作业要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/10066 一.小组情况 组长:贺敬文组员:彭思雨 王志文 位军营 徐丽君队名 ...

  7. 之前有面试到两个日期的大小比较方式,现在整理一下几种方法。   例子:   String beginTime=new String("2017-06-09 10:22:22");     String endTime=new String("2017-05-08 11:22:22");  1  直接用Date自带方法before()和after()比较 SimpleDateFormat d

    各种数据类型(日期/时间.integer.floating point和numeric)转换成格式化的字符串以及反过来从格式化的字符串转换成指定的数据类型.下面列出了这些函数,它们都遵循一个公共的调用 ...

  8. koa 项目实战(九)passport验证token

    1.安装模块 npm install koa-passport -D npm install passport-jwt -D 2.解析token 根目录/config/passport.js cons ...

  9. Mac下持续集成-查看占用的端口及kill

    (base) localhost:~ ligaijiang$ lsof -i tcp:8080 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME Q ...

  10. GCC4.7+中如何替代C11中的_Generic

    C11标准中,一个非常重大的特性更新就是增加了Generic Selection这个特性.这个特性能使得C11支持轻量级的泛型编程,使得可以把一组具有不同类型而却有相同功能的函数抽象为一个接口. 对于 ...