RMQ算法
1. 概述
RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。这两个问题是在实际应用中经常遇到的问题,下面介绍一下解决这两种问题的比较高效的算法。当然,该问题也可以用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),这里我们暂不介绍。
2.RMQ算法
对于该问题,最容易想到的解决方案是遍历,复杂度是O(n)。但当数据量非常大且查询很频繁时,该算法无法在有效的时间内查询出正解。
本节介绍了一种比较高效的在线算法(ST算法)解决这个问题。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。
(一)首先是预处理,用动态规划(DP)解决。
设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)
例如:
A数列为:3 2 4 5 6 8 1 2 9 7
F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;
并且我们可以容易的看出F[i,0]就等于A[i]。(DP的初始值)
这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。
我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。
代码如下:
- void RMQ(int num) //预处理->O(nlogn)
- {
- for(int j = 1; j < 20; ++j)
- for(int i = 1; i <= num; ++i)
- if(i + (1 << j) - 1 <= num)
- {
- maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);
- minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);
- }
- }
这里我们需要注意的是循环的顺序,我们发现外层是j,内层所i,这是为什么呢?可以是i在外,j在内吗?
答案是不可以。因为我们需要理解这个状态转移方程的意义。
状态转移方程的含义是:先更新所有长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得所有长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值,获得所有长度为F[i,2]即4个元素的最值,以此类推更新所有长度的最值。
而如果是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1开始1个元素,2个元素,4个元素,8个元素(A[0],A[1],....A[7])的最值,这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值,但是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这样的方法肯定是错误的。
为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。
(二)然后是查询。
假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。
因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。
举例说明,要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);
在这里我们也需要注意一个地方,就是<<运算符和+-运算符的优先级。
比如这个表达式:5 - 1 << 2是多少?
答案是:4 * 2 * 2 = 16。所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1。
RMQ算法的更多相关文章
- RMQ算法讲解
RMQ算法 引入: 例1.题目描述 输入N个数和M次询问,每次询问一个区间[L,R],求第L个数到R个数之间的最大值. 第一种方法:大暴力之术. 但是……时间复杂度最坏会达到 $O(NM)$,一半 ...
- RMQ算法 (ST算法)
概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中 ...
- RMQ算法详解
RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n)),查询O(1),所以是一个很快速的算法. 当然这个问题用线段树同样能够解决,算法复杂度为:O(N)~O(logN) . ...
- nyoj 119士兵杀敌(三)(线段树区间最值查询,RMQ算法)
题目119 题目信息 执行结果 本题排行 讨论区 士兵杀敌(三) 时间限制:2000 ms | 内存限制:65535 KB 难度:5 描写叙述 南将军统率着N个士兵,士兵分别编号为1~N,南将军常 ...
- RMQ 算法入门
1. 概述 RMQ(Range Minimum/Maximum Query).即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A ...
- RMQ 算法 学习整理
1. 概述 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A ...
- 线段树:CDOJ1591-An easy problem A (RMQ算法和最简单的线段树模板)
An easy problem A Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...
- RMQ算法 以及UVA 11235 Frequent Values(RMQ)
RMQ算法 简单来说,RMQ算法是给定一组数据,求取区间[l,r]内的最大或最小值. 例如一组任意数据 5 6 8 1 3 11 45 78 59 66 4,求取区间(1,8) 内的最大值.数据量小 ...
- 基于DP+位运算的RMQ算法
来源:http://blog.csdn.net/y990041769/article/details/38405063 RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n) ...
随机推荐
- RESTClient调试POST方法&Reflector+de4dot反混淆破解dll
RESTClient调试POST方法 RESTClient是火狐的一款WebAPI测试工具. 1.先看下我们要调试的接口
- 关于mysql使用命令行时出现Data too long for column的解决方案:
方法一: 1,在mysql根目录下找到my.ini文件: 2:将其中sql-mode中的STRICT_TRANS_TABLES这个属性去掉: 3:重启mysql的服务(注意注销电脑不会重启mysql服 ...
- Cleaner, more elegant, and harder to recognize(翻译)
Cleaner, more elegant, and harder to recognize 更整洁,更优雅,但更难识别 看来,有些人把我几个月前一篇文章的标题"Cleaner,more e ...
- 优化设计提高sql类数据库的性能
前言 在一个项目中,技术的统一性是最重要的,数据库的设计则是重点中的重点.NoSQL 是目前最流行的数据库,但是其实用性和功能性远不如sql数据库. 实际很多SQL数据库被诟病的性能问题大多是源于程序 ...
- KandQ:单例模式的七种写法及其相关问题解析
设计模式中的单例模式可以有7种写法,这7种写法有各自的优点和缺点: 代码示例(java)及其分析如下: 一.懒汉式 public class Singleton { private static Si ...
- Xamarin调用JSON.net来解析JSON
https://www.cnblogs.com/zjoch/p/4458516.html 再来我们要怎么解析JSON格示呢?在.net 中,我们很孰悉的JSON.net,没错,我们依然可以在X ...
- leetcode — word-break
import java.util.Arrays; import java.util.HashSet; import java.util.Set; /** * Source : https://oj.l ...
- egrep及扩展正则表达式 与正则表达式不同处
egrep及扩展正则表达式与正则表达式不同处 正则表达式有两类,分为基本正则表达式和扩展正则表达式,是使用命令egrep来使用扩展正则表达式,它与grep很多功能相同,仅在元字符上实现了些扩展扩展,在 ...
- Head First设计模式之享元模式(蝇量模式)
一.定义 享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式. ...
- 每天学一点Docker(3)(制作你的第一个容器)
今天开始制作第一个容器,其实很简单 首先你要准备这些条件: 1.一个Ubuntu系统 2.这个系统能够联网,最起码ping www.baidu.com是可以的 这些准备条件准备好了,接下来就开始做准备 ...