使用神经网络来拟合函数y = x^3 +b
我们使用一个三层的小网络来,模拟函数y = x^3+b函数
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #训练数据
x_data = np.linspace(-6.0,6.0,30)[:,np.newaxis]
y_data = np.power(x_data,3) + 0.7
#验证数据
t_data = np.linspace(-20.0,20.0,40)[:,np.newaxis]
ty_data = np.power(t_data,3) + 0.7
#占位符
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1]) #network
#--layer one--
l_w_1 = tf.Variable(tf.random_normal([1,10]))
l_b_1 = tf.Variable(tf.zeros([1,10]))
l_fcn_1 = tf.matmul(x, l_w_1) + l_b_1
relu_1 = tf.nn.relu(l_fcn_1)
#---layer two----
l_w_2 = tf.Variable(tf.random_normal([10,20]))
l_b_2 = tf.Variable(tf.zeros([1,20]))
l_fcn_2 = tf.matmul(relu_1, l_w_2) + l_b_2
relu_2 = tf.nn.relu(l_fcn_2) #---output---
l_w_3 = tf.Variable(tf.random_normal([20,1]))
l_b_3 = tf.Variable(tf.zeros([1,1]))
l_fcn_3 = tf.matmul(relu_2, l_w_3) + l_b_3
#relu_3 = tf.tanh(l_fcn_3)
# init
init = tf.global_variables_initializer()
#定义 loss func
loss = tf.reduce_mean(tf.square(y-l_fcn_3))
learn_rate =0.001
train_step = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss) with tf.Session() as sess:
sess.run(init);
for epoch in range(20):
for step in range(5000):
sess.run(train_step,feed_dict={x:x_data,y:y_data})
y_pred = sess.run(l_fcn_3,feed_dict={x:t_data})
print sess.run(l_fcn_3,feed_dict={x:[[10.]]})
plt.figure()
plt.scatter(t_data,ty_data)
plt.plot(t_data,y_pred,'r-')
plt.show()
[[ 533.45062256]]
使用神经网络来拟合函数y = x^3 +b的更多相关文章
- matlab最小二乘法数据拟合函数详解
定义: 最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小. ...
- matlab-非线性拟合函数lsqcurvefit的使用和初值选取
所解决问题: 我们知道我们的表达式是y=A+B*exp(-x.^2)-C./log(x), 而且现在我们手里面有x与y对应的一大把数据. 我们需要根据x, y的值找出最佳的A.B.C值.则我们现在借助 ...
- cftool拟合&函数逼近
cftool拟合&函数逼近 cftool 真是神奇,之前我们搞的一些线性拟合解方程,多项式拟合,函数拟合求参数啊,等等. 已经超级多了,为啥还得搞一个cftool拟合啊?而且毫无数学理论. 如 ...
- matlab的拟合函数polyfit()函数
matlab的多项式拟合: polyfit()函数 功能:在最小二乘法意义之上,求解Y关于X的最佳的N次多项式函数. clc;clear; close all; x=[ ]; y=[2.7 7.4 2 ...
- 函数 y=x^x的分析
关于函数 y=xx的分析: 由图像得,y在负无穷大到0图像处处不连续,故y的定义域为(0,正无穷大): 故该函数不就是y=e^(lnxx)吗? 1.定义域:我们变形一下,y=e^(xlnx),显然是0 ...
- 2、函数y=f(x)
/* Note:Your choice is C IDE */ #include "stdio.h" /* 3.函数y=f(x)可表示为: */ void main() { int ...
- 2017年全国卷3的21题与2018年全国卷3的21题命题背景是同一个函数$y=\frac{2x}{\ln(x+1)}$(再次瞎谈)
2017年四川高考数学(全国卷3)理科21题第1问 已知函数\(f(x)=x-1-a\ln x\) (1)若\(f(x)\geqslant 0\),求\(a\)的值\(.\) 该不等式等价于$a\ln ...
- 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function
One of the most striking facts about neural networks is that they can compute any function at all. T ...
- C# + Matlab 实现计件工时基于三层BP神经网络的拟合--真实项目
工序工时由该工序的工艺参数决定,有了工时后乘以固定因子就是计件工资.一般参考本地小时工资以及同类小时工资并考虑作业的风险等因素给出固定因子 采用的VS2010 , Matlab2015a 64, 开 ...
随机推荐
- Django项目创建02
Django项目创建(ubuntu环境) 1. 创建项目目录,我是在root下创建了一个workspace文件夹:mkdir workspace 然后cd到该目录下 命令:django-adm ...
- 移动端下拉刷新上拉加载-mescroll.js插件
最近无意间看到有这么一个上拉刷新下拉加载的插件 -- mescroll.js,个人感觉挺好用的,官网地址是:http://www.mescroll.com 然后我就看了一下文档,简单的写了一个小dem ...
- 【MySQL】查看支持的字符集show character set;
- Vagrant安装完lnmp后,配置linux和windows共享文件并配置虚拟主机访问项目
虚拟机目录下的Vagrantfile文件是vagrant的配置文件,如果想把虚拟机当作一台服务器,可以通过ip访问,需要修改配置文件进行配置. (1)第一步:打开虚拟机目录下的Vagrantfile文 ...
- TCP/IP协议族各层的作用
从协议分层模型方面来讲,TCP/IP由四个层次组成:数据链路层.网络层.传输层.应用层一.数据链路层 数据链路层是负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层 ...
- 使用 webpack 打包 font 字体的问题
之前在使用 Vue 做项目的时候使用了 font 字体,然而在打包的时候 font 字体的引用路径不正确. 解决办法就是在 webpack 的配置文件中设置根路径 目录在 \config\index. ...
- scala写算法-从后缀表达式构造
一个例子,比如ab+cde+**,这是一个后缀表达式,那么如何转换为一棵表达式树呢? 先上代码,再解释: object Main extends App{ import Tree.node def i ...
- Linux第七节随笔-中 /date / ln /
4.date link 作用:显示或设定系统的日期与时间 参数: -d<字符串> 显示字符串所指的日期与时间.字符串前后必须加上双引号. -s<字符串> 根据字符串来设置日期与 ...
- Regular expressions in lexing and parsing(翻译)
词法分析和语法分析中的正则表达式 (英文原文来自rob pike 的博客 https://commandcenter.blogspot.jp/2011/08/regular-expressions-i ...
- Linux(CentOS6.5)下编译安装PHP5.6.22时报错”configure: error: ZLIB extension requires gzgets in zlib”的解决方式(确定已经编译安装Zlib,并已经指定Zlib路径)
本文地址http://comexchan.cnblogs.com/,作者Comex Chan,尊重知识产权,转载请注明出处,谢谢! 今天在CentOS6.5下编译安装PHP时,一直报错 confi ...