在块分配机制中,涉及到几个主要的数据结构。

通过ext4_allocation_request描述块请求,然后基于块查找结果即上层需求来决定是否执行块分配操作。

在分配过程中,为了更好执行分配,记录一些信息,需要对分配行为进行描述,就有结构体ext4_allocation_contex。

在搜寻可用空间过程中,是有可能使用预分配空间的,因此还需要有能够描述预分配空间大小等属性的描述符ext4_prealloc_space。

 

下面,对各个关键结构体进行详细的分析。

1. 块请求描述符ext4_allocation_request

块分配请求属性,有请求描述符ext4_allocation_request来描述:

structext4_allocation_request {

/* target inode for block we'reallocating */

struct inode *inode;

/* how many blocks we want to allocate*/

unsigned int len;

/* logical block in target inode */

ext4_lblk_t logical;

/* the closest logical allocated blockto the left */

ext4_lblk_t lleft;

/* the closest logical allocated blockto the right */

ext4_lblk_t lright;

/* phys. target (a hint) */

ext4_fsblk_t goal;

/* phys. block for the closest logicalallocated block to the left */

ext4_fsblk_t pleft;

/* phys. block for the closest logicalallocated block to the right */

ext4_fsblk_t pright;

/* flags. see above EXT4_MB_HINT_* */

unsigned int flags;

};

这个请求描述符结构体在ext4_ext_map_blocks()中初始化(注:ext4_ext_map_blocks()的作用是查找或分配指定的block块,并完成与缓存空间的映射)。

具体上述信息也就一个成员变量goal值的我们分析一下,goal记录是物理块号,其隐含含义比较重要:goal虽然只是记录物理块号,但是这个物理块号的选择可以很大程度的是文件保证locality特性及其物理地址连续性。

goal是由函数ext4_ext_find_goal()来定义:

static ext4_fsblk_t ext4_ext_find_goal(struct inode*inode,

struct ext4_ext_path *path,

ext4_lblk_t block)

{

if(path) {

intdepth = path->p_depth;

structext4_extent *ex;

/*

* Try to predict block placement assuming thatwe are

* filling in a file which will eventually be

* non-sparse --- i.e., in the case of libbfdwriting

* an ELF object sections out-of-order but in away

* the eventually results in a contiguousobject or

* executable file, or some database extendinga table

* space file. However, this is actually somewhat

* non-ideal if we are writing a sparse filesuch as

* qemu or KVM writing a raw image file that isgoing

* to stay fairly sparse, since it will end up

* fragmenting the file system's free space. Maybe we

* should have some hueristics or some way toallow

* userspace to pass a hint to file system,

* especially if the latter case turns out tobe

* common.

*/

ex= path[depth].p_ext;

if(ex) {

ext4_fsblk_text_pblk = ext4_ext_pblock(ex);

ext4_lblk_text_block = le32_to_cpu(ex->ee_block);

if(block > ext_block)

returnext_pblk + (block - ext_block);

else

returnext_pblk - (ext_block - block);

}

/*it looks like index is empty;

* try to find starting block from index itself*/

if(path[depth].p_bh)

returnpath[depth].p_bh->b_blocknr;

}

/*OK. use inode's group */

returnext4_inode_to_goal_block(inode);

}

细细分析这段代码,如果从根目录到指定逻辑块的path存在,那么就需要根据path来计算目标物理块的地址。

(1) Path的终点若是dataextent,则说明该path是从根到叶子的。当请求block号大于path叶子extent的起始逻辑块号ext_block
(对应物理块号为pblk),其逻辑块的距离为(block-ext_block),为在最可能上保证对应物理地址的连续性;只需返回与pblk+(block-ext_block)物理块号最接近的空闲物理块即可;而对于请求block号小于extent的起始逻辑块号ext_block的情况,只需尽最可能以pblk-(
ext_block -block)物理块号为目标寻找与其物理地址最接近的空闲物理块即可。因此,我们指定goal分别为pblk+(block-ext_block)和pblk-(block-ext_block)

(2)而如果path存在,却没有叶子,那则么办,很简单,我们只需要将goal物理块号指定为最后一个的extent
block对应的物理块号
既可。

(3)还有一种情况,没有给出path。个人认为,这种场景即inode刚create的情况。有专门的ext4_inode_to_goal_block()来实现:

ext4_fsblk_t ext4_inode_to_goal_block(struct inode*inode)

{

structext4_inode_info *ei = EXT4_I(inode);

ext4_group_tblock_group;

ext4_grpblk_tcolour;

intflex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));

ext4_fsblk_tbg_start;

ext4_fsblk_tlast_block;

block_group= ei->i_block_group;

if(flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {

/*

* If there are at leastEXT4_FLEX_SIZE_DIR_ALLOC_SCHEME

* block groups per flexgroup, reserve thefirst block

* group for directories and special files. Regular

* files will start at the second blockgroup. This

* tends to speed up directory access andimproves

* fsck times.

*/

block_group&= ~(flex_size-1);

if(S_ISREG(inode->i_mode))

block_group++;

}

bg_start= ext4_group_first_block_no(inode->i_sb, block_group);

last_block= ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

/*

* If we are doing delayed allocation, we don'tneed take

* colour into account.

*/

if(test_opt(inode->i_sb, DELALLOC))

returnbg_start;

if(bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)

colour= (current->pid % 16) *

(EXT4_BLOCKS_PER_GROUP(inode->i_sb)/ 16);

else

colour= (current->pid % 16) * ((last_block - bg_start) / 16);

returnbg_start + colour;

}

其思想是:如果flex_size至少有EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME个block groups,则定义inode所在flex_group的第二个block
group的首个可用block为起始物理块号bg_block。

当然,如果该flex_group的所有文件都以bg_block为goal的,肯定会产生竞争,所以增加color的作用,目的就是加入一个随机值,降低可能带来的竞争。

因此,最后这种情况的goal会选择inode所在flex_group中某个随机值。

【说明:如果flex_size只有不小于EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME,则才有可能将flex_group中第一个group分离出来,用于专门存放directories和一些特殊文件,普通文件从第二个group中分配,该特可以加速directory的访问及fsck效率。】

2. 分配行为描述符ext4_allocation_contex

在分配过程中,为了更好执行分配,记录一些信息,需要对分配行为进行描述,就有结构体ext4_allocation_contex:

struct ext4_allocation_context{

struct inode *ac_inode;

struct super_block *ac_sb;

/* original request */

struct ext4_free_extent ac_o_ex;

/* goal request (normalized ac_o_ex) */

struct ext4_free_extent ac_g_ex;

/* the best found extent */

struct ext4_free_extent ac_b_ex;

/* copy of the best found extent takenbefore preallocation efforts */

struct ext4_free_extent ac_f_ex;

__u16 ac_groups_scanned;

__u16 ac_found;

__u16 ac_tail;

__u16 ac_buddy;

__u16 ac_flags;                  /* allocation hints */

__u8 ac_status;

__u8 ac_criteria;

__u8 ac_2order;                 /* if request is to allocate 2^N blocks and

* N > 0, the field stores N, otherwise 0 */

__u8 ac_op;               /* operation, for history only */

struct page *ac_bitmap_page;

struct page *ac_buddy_page;

struct ext4_prealloc_space *ac_pa;

struct ext4_locality_group *ac_lg;

};

这个数据结构用来描述分配上下文的属性。基于结构体ext4_allocation_request,由函数ext4_mb_initialize_context()进行初始化。

ext4_mb_initialize_context()主要工作:利用请求描述符的信息初始化ac->ac_o_ex:申请的逻辑块号fe_logical、goal所在的group,goal的cluster号(暂时理解为物理块号);然后将ac_g_ex赋值为ac_o_ex。

ext4_mb_normalize_request()会对ext4_allocation_contex结构体进行normalization:

1.计算file的大小size应该是i_size_read(ac->ac_inode)和(offset+请求长度)中的大值,其中offset是有指定block转化而来。

2.根据已定的算法估算文件可能的大小;

#define NRL_CHECK_SIZE(req, size, max, chunk_size)  \

(req<= (size) || max <= (chunk_size))

/*first, try to predict filesize */

/*XXX: should this table be tunable? */

start_off= 0;

if(size <= 16 * 1024) {

size= 16 * 1024;

}else if (size <= 32 * 1024) {

size= 32 * 1024;

}else if (size <= 64 * 1024) {

size= 64 * 1024;

}else if (size <= 128 * 1024) {

size= 128 * 1024;

}else if (size <= 256 * 1024) {

size= 256 * 1024;

}else if (size <= 512 * 1024) {

size= 512 * 1024;

}else if (size <= 1024 * 1024) {

size= 1024 * 1024;

}else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {

start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

(21- bsbits)) << 21;

size= 2 * 1024 * 1024;

}else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {

start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

(22- bsbits)) << 22;

size= 4 * 1024 * 1024;

}else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,

(8<<20)>>bsbits,max, 8 * 1024)) {

start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

(23- bsbits)) << 23;

size= 8 * 1024 * 1024;

}else {

start_off= (loff_t)ac->ac_o_ex.fe_logical << bsbits;

size  =ac->ac_o_ex.fe_len << bsbits;

}

size= size >> bsbits;

start= start_off >> bsbits;

由此可见,预估文件大小之后得到的size和start肯定比原来的要大一些。

3. check一下,是否覆盖了已有的prealloc空间。(如果覆盖,那就BUG);

4.更新ac_g_ex:根据(2)中size和start更新ac_g_ex;

ac->ac_g_ex.fe_logical= start;

ac->ac_g_ex.fe_len= EXT4_NUM_B2C(sbi, size);

由上可见,通过ext4_mb_normalize_request()函数主要更新了ac->ac_g_ex成员。

而ac->ac_b_ex是在ext4_mb_regular_allocator()函数初始化的,其表示可以分配的最佳的extent;隐含意思,就是就按这么分配。

而ac->ac_f_ex是在prealloc空间初始化之前保留ac_b_ex的副本,在ext4_mb_new_inode_pa()或ext4_mb_new_group_pa()中定义。

3. 预分配空间描述符ext4_allocation_contex

描述预分配空间大小等属性的描述符ext4_prealloc_space:

structext4_prealloc_space {

struct list_headpa_inode_list;

struct list_headpa_group_list;

union {

struct list_head pa_tmp_list;

struct rcu_headpa_rcu;

} u;

spinlock_t         pa_lock;

atomic_t            pa_count;

unsigned          pa_deleted;

ext4_fsblk_t               pa_pstart;/*phys. block */

ext4_lblk_t                 pa_lstart; /*log. block */

ext4_grpblk_t            pa_len;              /*len of preallocated chunk */

ext4_grpblk_t            pa_free;   /* howmany blocks are free */

unsigned short         pa_type;  /* pa type.inode or group */

spinlock_t         *pa_obj_lock;

struct inode               *pa_inode;       /*hack, for history only */

};

其中有四个结构体非常重要:

pa_lstart -> prealloc空间的起始逻辑地址(对文件而言);

pa_pstart -> prealloc空间的起始物理地址;

pa_len   -> prealloc空间的长度;

pa_free  -> prealloc空间的可用长度;

这个结构体是在函数ext4_mb_new_inode_pa()或ext4_mb_new_group_pa()中初始化。

暂时就分析这么几个结构体吧。

作者:Younger Liu,

本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 未本地化版本许可协议进行许可。

[ext4]空间管理 - 与分配相关的关键数据结构的更多相关文章

  1. [ext4]13 空间管理 - Prealloc分配机制

     作者:Younger Liu, 本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 未本地化版本许可协议进行许可. 在ext4系统中,对于小文件和大文件的空间申请请求,都有不同的分配策略 ...

  2. [ext4]空间管理 - 分配机制

     在Ext4系统中,存在很多分配策略,比如预分配.多块分配.延迟分配等   Prealloc预分配 在ext4系统中,对于小文件和大文件的空间申请请求,都有不同的分配策略.对用小文件的空间请求,e ...

  3. [ext4]空间管理 - 查找块

     在文件系统中,当需要执行写操作时,肯定是需要查找需要写入的块.那么如何查找块哪? 在Ext4系统中,有两个函数是可能执行查找操作的:ext4_getblk().ext4_get_block(). ...

  4. ORACLE表空间管理维护

    1:表空间概念 在ORACLE数据库中,所有数据从逻辑结构上看都是存放在表空间当中,当然表空间下还有段.区.块等逻辑结构.从物理结构上看是放在数据文件中.一个表空间可由多个数据文件组成. 如下图所示, ...

  5. Oracle表空间管理

    oracle表空间相关常用命令小结: 1.ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;              //修改表空间数据文件类型 2.ALT ...

  6. 本地管理表空间(LMT)与自动段空间管理(ASSM)概念

    创建表空间时,extent management local 定义本地管理表空间(LMT),segment space management auto 定义自动段空间管理(ASSM). extent ...

  7. Oracle数据库体系结构(7) 表空间管理1

    表空间是Oracle数据库最大的逻辑存储结构,有一系列段构成.Oracle数据库对象存储结构的管理主要是通过表空间的管理实现的. 1.表空间的分类 表空间根据存储类型不同分为系统表空间和非系统表空间 ...

  8. ORACLE 临时表空间管理

     临时表空间和临时段 临时表空间用于存放排序.临时表等数据,其信息不需要REDO,因此临时表的DML操作往往比普通表产生的REDO少很多.临时表数据变化不产生REDO,UNDO数据变化产生REDO.临 ...

  9. Jenkins遇到问题二:Jenkins服务器磁盘空间管理策略

    Jenkins在帮助我们自动化构建服务的同时也在消耗服务器的磁盘空间,试想如果构建的项目个数很多,而Jenkins 服务器磁盘空间又不是非常大的话,每隔一段时间磁盘空间就会爆满导致Jenkins出现磁 ...

随机推荐

  1. vue单文件组件的构建

    在很多Vue项目中,我们使用 Vue.component 来定义全局组件,这种方式在很多中小规模的项目中运作的很好. 但当在更复杂的项目中,就有了很大的弊端. 我们就可以用文件扩展名 .vue的单文件 ...

  2. (1) 类构造块,this(),static,单例模式串讲

    类构造块 在类只用一对大括号包含的内容,构造所有的对象时都会执行的内容,如果某个类有好几个够赞函数,公共部分抽取出来,放到构造块中. clas Boy { ... { syso("哭...& ...

  3. Linux环境Perl链接MS Sql Server数据库

    1.下载相关软件 unixODBC.freetds和DBD-ODBC ①.Linux系统的ODBC unixODBC-2.3.4.tar.gz ( http://www.unixodbc.org) ② ...

  4. 在js中,window != top 的作用

    在网站的首页加上下面的javascript,就可以把自己的窗口变成是最前端的窗口.可以避免别人把你的网站放在他的iframe中,显示的就是他的网站了,误导浏览者. <script type=&q ...

  5. python编码问题之\"encode\"&\"decode\"

    python encode decode 编码 decode的作用是将其他编码的字符串转换成unicode编码,如str1.decode('gb2312'),表示将gb2312编码的字符串str1转换 ...

  6. js中实现继承的几种方式

    首先我们了解,js中的继承是主要是由原型链实现的.那么什么是原型链呢? 由于每个实例中都有一个指向原型对象的指针,如果一个对象的原型对象,是另一个构造函数的实例,这个对象的原型对象就会指向另一个对象的 ...

  7. HTTP [TCP Retransmission] Continuation or non-HTTP traffic[Packet size limited during capture]

    http://www.xianren.org/blog/net/wireshark-q.html  抓到的包数据中常见的错误..待细看,先记下. tcpdump 抓包后发现,出现大量标题字样显示,不利 ...

  8. 关于bootstrap原理及优缺点

    网格系统的实现原理,是通过定义容器大小,平分12份(也有平分成24份或32份,但12份是最常见的),再调整内外边距,最后结合媒体查询,就制作出了强大的响应式网格系统.Bootstrap框架中的网格系统 ...

  9. 虚拟机Linux 的一些基础命令和注释

    cd命令 cd    ==回到初始,主目录 cd -  ==回到上一级目录交替 cd ~ ==回到root家目录 cd .  ==当前目录 cd .. ==进入上一级目录 ls命令 ls     == ...

  10. 设置ssh只允许用户从指定的IP登陆

    假设 我们公司的固定IP是  183.21.89.249   连接上我们自己进行管理的服务器   然后编辑ssh的配置文件默认  /etc/ssh/sshd_config   在文件最后面另起一行添加 ...