一道防AK好题

4325: NOIP2015 斗地主

Time Limit: 30 Sec  Memory Limit: 1024 MB
Submit: 820  Solved: 560
[Submit][Status][Discuss]

Description

牛牛最近迷上了一种叫斗地主的扑克游戏。斗地主是一种使用黑桃、红心、梅花、方片的A到K加上大小王的共54张牌来进行的扑克牌游戏。在斗地主中,牌的大小关系根据牌的数码表示如下:3<4<5<6<7<8<9<10<J<Q<K<A<2<小王<大王,而花色并不对牌的大小产生影响。每一局游戏中,一副手牌由n张牌组成。游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利。现在,牛牛只想知道,对于自己的若干组手牌,分别最少需要多少次出牌可以将它们打光。请你帮他解决这个问题。需要注意的是,本题中游戏者每次可以出手的牌型与一般的斗地主相似而略有不同。具体规则如下:

Input

第一行包含用空格隔开的2个正整数T,N,表示手牌的组数以及每组手牌的张数。

接下来T组数据,每组数据N行,每行一个非负整数对Ai,Bi,表示一张牌,其中Ai表示牌的数码,Bi表示牌的花色,中间用空格隔开。特别的,我们用1来表示数码A,11表示数码J,12表示数码Q,13表示数码K;黑桃、红心、梅花、方片分别用1-4来表示;小王的表示方法为01,大王的表示方法为02。
 

Output

共T行,每行一个整数,表示打光第T组手牌的最少次数。

Sample Input

1 8
7 4
8 4
9 1
10 4
11 1
5 1
1 4
1 1

Sample Output

3

HINT

共有1组手牌,包含8张牌:方片7,方片8,黑桃9,方片10,黑桃J,黑桃5,方

片A以及黑桃A。可以通过打单顺子(方片7,方片8,黑桃9,方片10,黑桃J),单张
牌(黑桃5)以及对子牌(黑桃A以及方片A)在3次内打光。
 
T<=10
N<=23

港真估计只有真正的$dalao$才能在考场上思路明确地码完这题qwq

虽然实际写出来代码量倒也不算大,比某维修数列好到不知哪里去了

这种大模拟的马力出题人应该被挂起来裱(雾)

正解就是个大暴搜,$DFS$查找顺牌的同时扫描查找带牌...

查找带牌时遵循尽量出最多的牌的贪心策略即可w

需要注意的是王牌可以出现在带牌里(四个 2 带俩王2333333)但是王牌和2都不能出现在顺子里

其他的完全乱搞就行只要能保证正确性w

参考做法

GitHub

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> int n;
int ans;
int sum[];
int cnt[]; int MakePair();
void DFS(int);
void Initialize();
int Convert(int); int main(){
int t;
scanf("%d%d",&t,&n);
while(t--){
Initialize();
ans=MakePair();
DFS();
printf("%d\n",ans);
}
} void Initialize(){
int x,trash;
memset(sum,,sizeof(sum));
for(int i=;i<n;i++){
scanf("%d%d",&x,&trash);
sum[Convert(x)]++;
}
} int MakePair(){
memset(cnt,,sizeof(cnt));
int ans=;
for(int i=;i<=;i++)
cnt[sum[i]]++;
while(cnt[]>=&&cnt[]>=){
cnt[]--;
cnt[]-=;
ans++;
}
while(cnt[]>=&&cnt[]>=){
cnt[]--;
cnt[]-=;
ans++;
}
while(cnt[]>=&&cnt[]>=){
cnt[]--;
cnt[]--;
ans++;
}
while(cnt[]>=&&cnt[]>=){
cnt[]--;
cnt[]--;
ans++;
}
ans+=cnt[]+cnt[]+cnt[]+cnt[];
return ans;
} void DFS(int deep){
if(deep>ans)
return;
ans=std::min(ans,deep+MakePair());
for(int i=;i<=;i++){
int tmp=i;
while(tmp<=&&sum[tmp]>=)
tmp++;
tmp--;
if(tmp-i+<)
continue;
for(int k=tmp;k-i+>=;k--){
for(int j=i;j<=k;j++)
sum[j]-=;
DFS(deep+);
for(int j=i;j<=k;j++)
sum[j]+=;
}
}
for(int i=;i<=;i++){
int tmp=i;
while(tmp<=&&sum[tmp]>=)
tmp++;
tmp--;
if(tmp-i+<)
continue;
for(int k=tmp;k-i+>=;k--){
for(int j=i;j<=k;j++)
sum[j]-=;
DFS(deep+);
for(int j=i;j<=k;j++)
sum[j]+=;
}
}
for(int i=;i<=;i++){
int tmp=i;
while(tmp<=&&sum[tmp]>=)
tmp++;
tmp--;
if(tmp-i+<)
continue;
for(int k=tmp;k-i+>=;k--){
for(int j=i;j<=k;j++)
sum[j]--;
DFS(deep+);
for(int j=i;j<=k;j++)
sum[j]++;
}
}
} inline int Convert(int x){
if(x==)
return ;
else if(x==)
return ;
else if(x==)
return ;
else
return x-;
}

Backup

[BZOJ 4325][NOIP 2015] 斗地主的更多相关文章

  1. Luogu 2668 NOIP 2015 斗地主(搜索,动态规划)

    Luogu 2668 NOIP 2015 斗地主(搜索,动态规划) Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来 ...

  2. 基础算法(搜索):NOIP 2015 斗地主

    Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3& ...

  3. [NOIp 2015]斗地主

    Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3& ...

  4. [NOIP 2015] 斗地主 landlord

    想起几个月之前的 noip2015-只会瞎搞-这道题骗了 30 分.T T 题目 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的 A 到 K 加上大小王的共 54 张牌 ...

  5. noip 2015 斗地主 大爆搜!!!

    反正肯定是大模拟 但是每一个可以出的牌都搜一定不是最优的 考虑最特殊的出牌方案:顺子(单,对,三) 每一种方案再加上暴力贪心打出剩下的牌的步数 #include<cstdio> #incl ...

  6. 洛谷 P2668 & P2540 [ noip 2015 ] 斗地主 —— 搜索+贪心

    题目:https://www.luogu.org/problemnew/show/P2668   https://www.luogu.org/problemnew/show/P2540 首先,如果没有 ...

  7. 4632 NOIP[2015] 运输计划

    4632 NOIP[2015] 运输计划  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 大师 Master 题解       题目描述 Description 公元 2044 ...

  8. NOIP 2015

    Prob.1 2015 神奇的幻方 模拟就好了.(这不是noip2017的初赛题么.)代码: #include<cstdio> #include<cstring> #inclu ...

  9. [NOIP 2015]运输计划-[树上差分+二分答案]-解题报告

    [NOIP 2015]运输计划 题面: A[NOIP2015 Day2]运输计划 时间限制 : 20000 MS 空间限制 : 262144 KB 问题描述 公元 2044 年,人类进入了宇宙纪元. ...

随机推荐

  1. 实现Ant Design 自定义表单组件

    Ant Design 组件提供了Input,InputNumber,Radio,Select,uplod等表单组件,但实际开发中这是不能满足需求,同时我们希望可以继续使用Form提供的验证和提示等方法 ...

  2. 手动整合实现SSH项目开发01

    内容简介:本文主要介绍SSH项目开发的配置以及简单登录功能的实现. 1. 新建一个Dynamic Web Project. 2.导入需要 的Jar包,此项目是Struts.Hibernate.Spri ...

  3. 《JavaScript高级程序设计》笔记二

    第二章 在HTML中使用JavaScript 要想把JavaScript放到网页中,就必须涉及到Web的核心语言HTML.向HTML页面中插入JavaScript的主要方法,就是使用<scrip ...

  4. 基于TFS的.net技术路线的云平台DevOps实践

    DevOps是近几年非常流行的系统研发管理模式,很多公司都或多或少在践行DevOps.那么,今天就说说特来电云平台在DevOps方面的实践吧. 说DevOps,不得不说DevOps的具体含义.那么,D ...

  5. Intellj IDEA光标为insert状态,无法删除内容

    以前用得是社区版的IDEA,今天装了14版本的,结果导入项目后,发现打开java文件的光标是win系统下按了insert键后的那种宽的光标,并且还无法删除内容,且按删除(delete)键也只见光标往前 ...

  6. 怎么样刷新frameset的整个页面

    <a href="main.html?a=2" target="_parent">?  设置a链接的target属性值为_parent即可

  7. Spring Boot1.5.4 连接池 和 事务

    原文:https://github.com/x113773/testall/issues/10 默认连接池---spring Boot中默认支持的连接池有Tomcat.HikariCP .DBCP . ...

  8. 怎么使用CURL传输工具发送get或者post指令

    1.先下载CURL,见网盘 2.使用,可以直接到doc,cd到curl.exe目录,然后执行 或者用脚本 Set exeRs = WshShell.Exec("curl.exe -F &qu ...

  9. 可满足性模块理论(SMT)基础 - 01 - 自动机和斯皮尔伯格算术

    可满足性模块理论(SMT)基础 - 01 - 自动机和斯皮尔伯格算术 前言 如果,我们只给出一个数学问题的(比如一道数独题)约束条件,是否有程序可以自动求出一个解? 可满足性模理论(SMT - Sat ...

  10. ReactiveCocoa源码解析(五) SignalProtocol的observe()、Map、Filter延展实现

    上篇博客我们对Signal的基本实现以及Signal的面向协议扩展进行了介绍, 详细内容请移步于<Signal中的静态属性静态方法以及面向协议扩展>.并且聊了Signal的所有的g功能扩展 ...