首先是惯例的吐槽。SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇。学长说考SDOI可以考出联赛分数,%%%。

下面放解题报告。并不喜欢打莫比鸟斯的解题报告就是因为公式编辑太鬼。

不知道多少分算法:简单模拟不解释。

正解一眼是莫比鸟斯函数,话说上次考莫比鸟斯就是去年吧,好像题目名也叫数字表格,只不过多了一个前缀"Crash的"。

慢慢推吧,这里公式编辑器好像坏了?雾,贼慢。

假设n<=m;(if(n>m)swap(n,m);)

老套路,枚举(i,j),看被算了多少次。

//好像不是严格意义上的布尔表达式?差不多就是这个意思吧。

然后提前+替换,变成了

然后上面那一堆东西就是喜闻乐见的莫比鸟斯函数优化

变成这样一个鬼样子

上面那堆就是喜闻乐见的数论分块搞搞。

然后注意到其实下面这一段也可以分块... ...

还是要解释一下:

把指数那一堆设为Get(nn,mm),可以用数论分块算出来。

然后原式就变成了

又可以喜闻乐见数论分块。

现在大概是O(n1/2(n1/2)1/2)=O(n3/4)*T;

然后直接肛正面应该只有60分。

100分的话卡卡常数,加点记忆化就过去了...就过去了...(大雾)。

然后还要预处理前缀积什么的,还要用逆元和欧拉函数降幂大法... ...

这题出的还是不错的。

然后好像逆元预处理 比爆算 要慢一点?雾。

其实可以离线后再省一点预处理的时间(丧心病狂)。

无所谓了。在B站上应该稳定40s以内吧。

把long long 改成int 是最好的常数优化。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#define LL long long
using namespace std; const int N = 1000010;
const int Mod = 1000000007;
const int Nmod = Mod-1;
int n,m,f[N],miu[N],vis[N],P[N/10],tot,Ny[N];
int map[5010][5010];
LL Ans,ans; inline int gi()
{
int x=0,res=1;char ch=getchar();
while(ch<'0' || ch>'9'){if(ch=='-')res=-res;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
return x*res;
} inline int QPow(int d,int z)
{
int _ans=1;
for(;z;z>>=1,d=(LL)d*d%Mod)
if(z&1)_ans=(LL)_ans*d%Mod;
return _ans;
} inline void pre()
{
f[1]=1;
for(int i=2;i<N;++i){
f[i]=f[i-1]+f[i-2];
if(f[i]>=Mod)f[i]-=Mod;
}
f[0]=1;
for(int i=1;i<N;++i)
f[i]=(LL)f[i]*f[i-1]%Mod;
for(int i=0;i<N;++i)
Ny[i]=QPow(f[i],Mod-2);
} inline void shai()
{
miu[1]=1;
for(int i=2;i<N;++i){
if(!vis[i])P[++tot]=i,miu[i]=-1;
for(int j=1;j<=tot;++j){
int Inc=i*P[j];
if(Inc>=N)break;
vis[Inc]=1;
if(i%P[j]==0)break;
miu[Inc]=-miu[i];
}
}
for(int i=1;i<=N;++i)
miu[i]=miu[i-1]+miu[i];
} inline int Get(int nn,int mm)
{
if(nn<=5000 && mm<=5000)
if(map[nn][mm])return map[nn][mm];
ans=0;
for(int l=1,r;l<=nn;l=r+1){
r=min(nn/(nn/l),mm/(mm/l));
ans+=1ll*(miu[r]-miu[l-1])*(nn/l)*(mm/l);
}
ans%=Nmod;
if(nn<=5000 && mm<=5000)map[nn][mm]=ans;
return ans;
} int main()
{
pre();shai();int T=gi();
while(T--){
Ans=1;n=gi();m=gi();if(n>m)swap(n,m);
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
Ans=1ll*Ans*QPow(1ll*f[r]*Ny[l-1]%Mod,Get(n/l,m/l))%Mod;
}
printf("%lld\n",Ans);
}
return 0;
}

  

BZOJ 4816 数字表格的更多相关文章

  1. bzoj 4816 数字表格 —— 反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 推导过程同:http://www.cnblogs.com/zhouzhendong/p ...

  2. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  3. 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  4. 【BZOJ】【2154】Crash的数字表格

    莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  7. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  8. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  9. 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

    2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...

随机推荐

  1. Winform界面中实现通用工具栏按钮的事件处理

    在一个给客户做的项目中,界面要求修改增加通用工具栏按钮的事件处理,也就是在主界面中放置几个固定的功能操作按钮,打开不同的页面的时候,实现对应页面的功能处理,这种和我标准的界面处理方式有所不同,标准的列 ...

  2. Less变量

    Less变量 定义变量 Less 中的变量和其他编程语言一样,可以实现值的复用,同样它也有作用域(scope).简单的讲,变量作用域就是局部变量和全局变量的概念. Less 中,变量作用域采用的是就近 ...

  3. 工厂模式(Factory Method)

    1.工厂方法模式(Factory Method) 工厂方法模式分为三种: 1-1.普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建. 举例如下:(我们举一个发送邮件和短信的例子 ...

  4. ##7.Dashboard web管理界面-- openstack pike

    ##7.Dashboard web管理界面 openstack pike 安装 目录汇总 http://www.cnblogs.com/elvi/p/7613861.html ##.Dashboard ...

  5. jquery 循环数组输出显示在html页面

    jquery 没有双向数据绑定,但是很多需求确实需要我们从后台接收到数组或者对象循环显示在前台页面上,这时我们可以用字符串拼接,元素添加的方法去实现 js部分如下: $(function(){ var ...

  6. The requested URL / was not found on this server——Apache配置虚拟域名后无法访问localhost

    今天为了做项目,在Apache中配置了项目域名,成功访问.但是忽然发现要访问localhost突然出现The requested URL / was not found on this server. ...

  7. dom4j详解

    Dom4j下载及使用Dom4j读写XML简介要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:htt ...

  8. Unity3D中通过Animator动画状态机获取任意animation clip的准确播放持续时长

    Unity3d 4及之前的版本中动画的播放用的animation,可直接获取其播放持续长度.但5.x及以后的版本中都是用animator来播放动画了. https://docs.unity3d.com ...

  9. Chrome development tools学习笔记(5)

    调试JavaScript 随着如今JavaScript应用的越来越广泛,在面对前端工作的时候,开发人员须要强大的调试工具来高速有效地解决这个问题.我们文章的主角,Chrome DevTools就提供了 ...

  10. Unity 3D游戏开发引擎:最火的插件推荐

    摘要:为了帮助使用Unity引擎的开发人员制作更完美的游戏.我们精心挑选了十款相关开发插件和工具.它们是:2D Toolkit.NGUI.Playmaker.EasyTouch & EasyJ ...