Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13717   Accepted: 5824

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

题目链接:POJ 3177

给你可能有多个的无向图,求最少加几条边使得图成为一个双连通分量。

做法:tarjan求出桥并把桥边标记删除,再DFS出各个连通块,并标注上所属块id,然后统计缩点之后的每个点的度,显然叶子节点的度为1即只连着一条边,但由于是无向图,会重复算一次,因此实际上所有点的度会多一倍,记叶子节点的个数为$leaf$,则答案为$(leaf+1)/2$,为什么是这样呢?因为当叶子为偶数的时候,可以找到具有最远LCA的叶子,两两之间连一条边形成环,这样便融入了双连通分量中而且这样是最优的方案,奇数的话剩下的一个随意找一个叶子融合一下就行了,这题据说有重边,用id处理一下即可。

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=5010;
const int M=10010;
struct edge
{
int to,nxt;
int id,flag;
};
edge E[M<<1];
int head[N],tot;
int dfn[N],low[N],st[N],ts,scc,top,belong[N],deg[N];
bitset<N> ins; void init()
{
CLR(head,-1);
tot=0;
CLR(dfn,0);
CLR(low,0);
ts=scc=top=0;
CLR(belong,0);
CLR(deg,0);
ins.reset();
}
inline void add(int s,int t,int id)
{
E[tot].to=t;
E[tot].id=id;
E[tot].flag=false;
E[tot].nxt=head[s];
head[s]=tot++;
}
void Tarjan(int u,int id)
{
dfn[u]=low[u]=++ts;
ins[u]=1;
st[top++]=u;
int i,v;
for (i=head[u]; ~i; i=E[i].nxt)
{
if(E[i].id==id)
continue;
v=E[i].to;
if(!dfn[v])
{
Tarjan(v,E[i].id);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])
{
E[i].flag=true;
E[i^1].flag=true;
}
}
else if(ins[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++scc;
do
{
v=st[--top];
ins[v]=0;
}while (u!=v);
}
}
void dfs(int u,int x)
{
belong[u]=x;
ins[u]=1;
for (int i=head[u]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(!ins[v]&&!E[i].flag)
dfs(v,x);
}
}
int main(void)
{
int n,m,a,b,i,j;
while (~scanf("%d%d",&n,&m))
{
init();
for (i=0; i<m; ++i)
{
scanf("%d%d",&a,&b);
add(a,b,i);
add(b,a,i);
}
for (i=1; i<=n; ++i)
if(!dfn[i])
Tarjan(i,-1);
ins.reset();
int block=0;
for (i=1; i<=n; ++i)
if(!ins[i])
dfs(i,++block);
for (i=1; i<=n; ++i)
{
for (j=head[i]; ~j; j=E[j].nxt)
{
int v=E[j].to;
if(belong[i]!=belong[v])
{
++deg[belong[i]];
++deg[belong[v]];
}
}
}
int ans=0;
for (i=1; i<=block; ++i)
if(deg[i]==2)
++ans;
printf("%d\n",(ans+1)>>1);
}
return 0;
}

POJ 3177 Redundant Paths(边双连通的构造)的更多相关文章

  1. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  2. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  3. POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)

    这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...

  4. POJ 3177 Redundant Paths 边双(重边)缩点

    分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...

  5. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  6. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  7. poj 3177 Redundant Paths(tarjan边双连通)

    题目链接:http://poj.org/problem?id=3177 题意:求最少加几条边使得没对点都有至少两条路互通. 题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后 ...

  8. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  9. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

随机推荐

  1. Linux学习之二--搭建FTP服务器

    一.查看是否安装有FTP rpm -qa|grep vsftpd 二.如果没有安装,就安装FTP yum install -y vsftpd 三.加入开机启动 systemctl enable vsf ...

  2. PHP 图片处理工具类(添加水印与生成缩略图)

    =================ImageTool.class.php================= <?php class ImageTool { private $imagePath; ...

  3. 【原创】Redux 卍解

    Redux 卍解 Redux - Flux设计模式的又一种实现形式. 说起Flux,笔者之前,曾写过一篇<ReFlux细说>的文章,重点对比讲述了Flux的另外两种实现形式:『Facebo ...

  4. 最简单的js确认框!

    随便举个栗子~ function bremove() { if (ids == "") {//触发函数,如果值是空弹框 alert("您还没有选择任何数据.") ...

  5. java 跨域

    jsonp做前端跨域需要服务器的支持的,造成json字符串前缀 var a=...或者 a[].... 实在有点麻烦,故还是后台跨域取数据好了 package com.pro.domain; impo ...

  6. .NET程序员转Java不完全指南

    首先要声明一点,“转”字并不包含那种语言牛B的意思. 然后要声明一点,“转”字仅限于企业应用开发的语言的转. 假设各种数据库切换无代沟, 假设各种WEB客户端技术无障碍. 1.搭建环境,IDE主流是e ...

  7. canvas 画板

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  8. 51nod1088(最长回文子串)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1088 题意: 中文题目诶~ 思路: 这道题字符串长度限定为1 ...

  9. redis-3.2.5 make 报错

    make[]: Entering directory `/usr/local/src/redis-/src' CC adlist.o In file included : zmalloc.h::: e ...

  10. python安装库

    首先确保安装了pip,并且pip也加入了系统path路径: pip下载:https://pypi.python.org/pypi/pip#downloads 下载Python对应的包:(http:// ...