(Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户。

2560: 串珠子

Time Limit: 10 Sec Memory Limit: 128 MB

Submit: 915 Solved: 603

[Submit][Status][Discuss]

Description

  铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。

  现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。

  铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。

 

Input

 标准输入。输入第一行包含一个正整数n,表示珠子的个数。接下来n行,每行包含n个非负整数,用空格隔开。这n行中,第i行第j个数为ci,j。

 

Output

 标准输出。输出一行一个整数,为连接方案数对1000000007取模的结果。

Sample Input

3

0 2 3

2 0 4

3 4 0

Sample Output

50

HINT

  对于100%的数据,n为正整数,所有的ci,j为非负整数且不超过1000000007。保证ci,j=cj,i。每组数据的n值如下表所示。

编号 1 2 3 4 5 6 7 8 9 10

n 8 9 9 10 11 12 13 14 15 16

Source

2012国家集训队Round 1 day1

题意:



思路:



状压DP,

我们把n个点压成二进制数代表n个点的状态信息。

我们设两个数组,

g[s] 代表s状态下的所有情况(s中为1的节点不一定联通情况)

即s状态下的点两两之间任意连边(可以不连,所以边数应该+1)

f[s] 代表s状态下的合法情况(即s中为1的节点之间一定联通)方案数。

容易知道答案就是 f[(2^n)-1]

通过枚举二进制状态信息,我们可以在(nn2^n)的时间复杂度来求出g数组,

然后我们通过容斥原理来求f[s]

我们枚举所有状态s,然后枚举s的所有子集,设子集为i,那么不合法的情况就是

g[i]*f[s^i] ,我们减去这些情况,就得到f[s] 了。这里的 s^i 是 i关于集合s的补集。

枚举子集可以看这个神仙的博客http://www.cnblogs.com/jffifa/archive/2012/01/16/2323999.html

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=700010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ const ll mod=1000000007ll; ll g[maxn];
ll f[maxn];
ll a[20][20];
int n;
int main()
{
// freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout);
gbtb;
// cout<<(1<<16)<<endl;
cin>>n;
rep(i,0,n)
{
rep(j,0,n)
{
cin>>a[i][j];
}
}
int maxstate=(1<<n)-1;
for(int i=1;i<=maxstate;i++)
{
g[i]=1ll;
for(int j=0;j<=n;j++)
if(i&(1<<j))
{
for(int k=j+1;k<=n;++k)
if(i&(1<<k))
{
g[i]=(g[i]*(a[j][k]+1))%mod;
}
}
f[i]=g[i];
int upup = i & (i - 1);
for (int j = upup; j; j = upup & (j - 1))
{
f[i]=(f[i]-g[j]*f[j^i]%mod+mod)%mod;
}
}
cout<<f[maxstate]<<endl; return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)的更多相关文章

  1. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  2. bzoj2560串珠子 状压dp+容斥(?)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 515  Solved: 348[Submit][Status][Discuss] ...

  3. 【bzoj2560】串珠子 状压dp+容斥原理

    题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...

  4. 计蒜客习题:蒜头君的积木 (状压DP 枚举子集)

    问题描述 蒜头君酷爱搭积木,他用积木搭了 n 辆重量为 wi的小车和一艘最大载重量为 W 的小船,他想用这艘小船将 n 辆小车运输过河.每次小船运载的小车重量不能超过 W.另外,小船在运载小车时,每辆 ...

  5. 【BZOJ2560】串珠子 状压DP+容斥

    [BZOJ2560]串珠子 Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个 ...

  6. bzoj2560 串珠子 状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...

  7. UVA 11825 Hackers’ Crackdown 状压DP枚举子集势

    Hackers’ Crackdown Miracle Corporations has a number of system services running in a distributed com ...

  8. BZOJ1195 [HNOI2006]最短母串 【状压dp】

    题目 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. 输入格式 第一行是一个正整数n(n<=12),表示给定的字符串的 ...

  9. BZOJ 2073: [POI2004]PRZ( 状压dp )

    早上这道题没调完就去玩NOI网络同步赛了.... 状压dp , dp( s ) 表示 s 状态下所用的最短时间 , 转移就直接暴力枚举子集 . 可以先预处理出每个状态下的重量和时间的信息 . 复杂度是 ...

随机推荐

  1. final finalize finally throw throws try catch

    什么是finalize()方法 finalize()方法什么时候被调用 参见网址 析构函数(finalization)的目的是什么 final 和 finalize 的区别 final以下参见网址 f ...

  2. leetcode-mid-dynamic programming-55. Jump Game

    mycode  71.47% 思路: 既然要到达终点,那么俺就可以倒推,要想到达n,可以有以下情况 1)到达n-1,然后该位置最少可以走一步 2)到达n-2,然后该位置最少可以走两步 3)到达n-3, ...

  3. mysql 全量备份以及增量备份

    MySQL 的全量备份很简单,增量备份虽然会手动使用但是还没写过脚本去实现增量备份.今天搞一搞,顺便回忆一下MySQL的基本操作.

  4. ssm的自动类型转换器

    1.jsp页面将String 转换成employee类型 <form action="testConversionServiceConverer" method=" ...

  5. tomcat7源码包编译安装

    tomcat/:作用解析jsp程序.先安装jdk容器.1.下载jdk, wget http://download.oracle.com/otn- pub/java/jdk/8u131- b11/d54 ...

  6. 大sd卡 裂开了,写保护掉了。重新装好后,被写保护的解决办:

    大sd卡 裂开了,写保护掉了.重新装好后,被写保护的解决办: 1.用烙铁把写保护附近的塑料往外顶一点点,就ok   别太热,也别劲太大.容易过,不能破坏原来的部分. 解决问题. 总结: 写保护,就是检 ...

  7. 递归算法输出数列的前N个数

    数列1,1,1,3,5,9,17,31,57,105……N大于3时,第N个数为前三个数之和. ; i < ; i++) { listint.Add(); } test3(); test3(); ...

  8. IDEA给类和方法配置注释模板(参数换行显示)

    创建类模板 1.打开设置:File–>settings–>Editor–>File and Code Templates–>Includes 2.输入注释模板 #if (${P ...

  9. MySQL学习-基础练习题

    day1 学生表操作: 1. 查询出班级205有多少个男生 2. 查询出名字为4个字的所有学生信息(编号.姓名,年龄,班级) 3. 查询出所有姓王的学生信息(编号.姓名,年龄,班级) 4. 查询出班级 ...

  10. 递归算法之不用乘号的乘法——用位移实现乘法(dart语言实现)

    前两天突发奇想,写一个乘法的实现,但不用乘号*.并测试一下性能如何.因此就有了下面的代码:(本文主要目的是为了玩递归和位移,因此仅限自然数) 首先,标准乘法: int commonMultiplica ...