暴力搜索超时,但是折半后两部分状态支持合并的情况,可用折半枚举算法

poj3977 给一个序列a[],从里面找到k个数,使其和的绝对值最小

经典折半枚举法+二分解决,对于前一半数开一个map,map[sum]里存下凑出当前sum的最小元素个数

枚举后面一半的所有情况,然后lower_bound去找map里最接近-sum的元素,由于要求输出sum最小并且num也尽量小的答案,所以用pair来存答案

#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<math.h>
#include<vector>
#include<map>
using namespace std;
#define N 45
#define PI 4*atan(1.0)
#define mod 1000000007
#define met(a, b) memset(a, b, sizeof(a))
#define INF 10000000000000000
typedef long long LL; int n;
LL a[N]; LL Abs(LL x){return x<?-x:x;}
int main(){
while(scanf("%d", &n), n){
for(int i=; i<n; i++)
scanf("%I64d", &a[i]); map<LL, int> M;
map<LL, int>::iterator it;
pair<LL, int> ans(Abs(a[]), ); for(int i=; i<<<(n/); i++){
LL sum = ;int cnt = ;
for(int j=; j<(n/); j++){
if((i>>j)&){
sum += a[j];
cnt ++;
}
}
ans = min(ans, make_pair(Abs(sum), cnt));///全部是前半部分的;
if(M[sum])///更新cnt为小的;
M[sum] = min(M[sum], cnt);
else
M[sum] = cnt;
} for(int i=; i<<<(n-n/); i++){
LL sum = ;int cnt = ;
for(int j=; j<(n-n/); j++){
if((i>>j)&){
sum += a[j+n/];
cnt ++;
}
}
ans = min(ans, make_pair(Abs(sum), cnt));///全部是后半部分的; it = M.lower_bound(-sum);///找到第一个大于-sum的位置,然后取两种情况的最小值; if(it != M.end())
ans = min(ans, make_pair(Abs(sum+it->first), cnt+it->second));
if(it != M.begin()){
it--;
ans = min(ans, make_pair(Abs(sum+it->first), cnt+it->second));
}
}
printf("%I64d %d\n", ans.first, ans.second);
}
return ;
}

折半枚举——poj3977的更多相关文章

  1. Load Balancing 折半枚举大法好啊

    Load Balancing 给出每个学生的学分.   将学生按学分分成四组,使得sigma (sumi-n/4)最小.         算法:   折半枚举 #include <iostrea ...

  2. CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。

    1514: Packs Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 4[Submit][Status][Web Board] ...

  3. NYOJ 1091 超大01背包(折半枚举)

    这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...

  4. Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))

    888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...

  5. Codeforces 912 E.Prime Gift (折半枚举、二分)

    题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...

  6. poj_3977 折半枚举

    题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...

  7. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

  8. poj 3977 Subset(折半枚举+二进制枚举+二分)

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 1083 Descripti ...

  9. CodeForces888E Maximum Subsequence(折半枚举+two-pointers)

    题意 给定一个包含\(n\)个数的序列\(a\),在其中任选若干个数,使得他们的和对\(m\)取模后最大.(\(n\leq 35\)) 题解 显然,\(2^n\)的暴枚是不现实的...,于是我们想到了 ...

随机推荐

  1. Centos MySQL 5.7安装、升级教程

    MySQL 5.7安装.升级笔记分享: 卸载当前的 MySQL 查看当前 MySQL 版本: ? 1 2 [root@coderknock ~]# mysql -V mysql Ver 14.14 D ...

  2. 系统的重要文件/etc/inittab被删除了--急救办法!

    如果在生产环境中,系统的重要文件/etc/inittab被删除了(系统还没重启,崩溃前),不要急,下面告诉你该如何处理.1.模拟误删除文件[root@localhost ~]# rm -rf /etc ...

  3. 使用struts2未登录,不能操作

    1.定义拦截器类: 注意登录的action,登录成功在session存入标记(login) import com.opensymphony.xwork2.ActionContext; import c ...

  4. django 重写 mysql 连接库实现连接池

    django 重写 mysql 连接库实现连接池 问题 django 项目使用 gunicorn + gevent 部署,并设置 CONN_MAX_AGE 会导致 mysql 数据库连接数飙升,在高并 ...

  5. 解决:The “https://packagist.laravel-china.org/packages.json” file could not be downloaded

    使用composer安装错误提示: The "https://packagist.laravel-china.org/packages.json" file could not b ...

  6. 【转】JMX之ObjectName

    原文链接:https://blog.csdn.net/yunlong34574/article/details/46563187 ObjectName 就是存储了一个domain(域)下的一些属性,属 ...

  7. c# networkcomms 3.0实现模拟登陆总结 转载https://www.cnblogs.com/zuochanzi/p/7039636.html

    最近项目需要做一个客户查询状态系统,当前上位机缺少服务功能,于是找到了networkcomms 开源框架,作为项目使用. 最新版networkcomms 下载地址:https://github.com ...

  8. python面试题之补充缺失的代码

    补充缺失的代码 def print_directory_contents(sPath): """ 这个函数接受文件夹的名称作为输入参数, 返回该文件夹中文件的路径, 以及 ...

  9. bootstrap学习(三)表单

    基本实例: from-group:可以是其内的标签排列更好 from-control:使标签宽度为100% <form> <div class="form-group&qu ...

  10. android html布局界面