【JZOJ6431】【luoguP5658】【CSP-S2019】括号树
description
analysis
用栈维护一下树上路径未匹配的左括号,然后在树上找右括号匹配,设\(f[i]\)为\(i\)节点的贡献,\(g[i]\)是答案
为左括号可以直接继承父节点的信息,为右括号且栈非空则可以匹配,贡献值是栈顶左括号的父节点的贡献\(+1\)
这个其实就是当前子序列可以拼上左括号父亲的序列,然后每一位的答案就是父节点的答案加上当前点的贡献
code
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 500005
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
#define rep(i,a) for (reg i=las[a];i;i=nex[i])
using namespace std;
ll las[MAXN],nex[MAXN],tov[MAXN];
ll f[MAXN],g[MAXN],fa[MAXN],stack[MAXN];
char s[MAXN];
ll n,tot,top,ans;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline void link(ll x,ll y){nex[++tot]=las[x],las[x]=tot,tov[tot]=y;}
inline void dfs(ll x)
{
ll tmp=0;
if (s[x]=='(')stack[++top]=x;
else if (top)tmp=stack[top],f[x]=f[fa[tmp]]+1,--top;
g[x]=g[fa[x]]+f[x],ans^=x*g[x];
rep(i,x)dfs(tov[i]);
if (tmp)stack[++top]=tmp;
else if (top)--top;
}
int main()
{
n=read(),scanf("%s",s+1);
fo(i,2,n)link(fa[i]=read(),i);
dfs(1),printf("%lld\n",ans);
return 0;
}
【JZOJ6431】【luoguP5658】【CSP-S2019】括号树的更多相关文章
- 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解
前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...
- P5658 括号树
P5658 括号树 题解 太菜了啥都不会写只能水5分数据 啥都不会写只能翻题解 题解大大我错了 我们手动找一下规律 我们设 w[ i ] 为从根节点到结点 i 对答案的贡献,也就是走到结点 i ,合 ...
- [CSP-S 2019]括号树
[CSP-S 2019]括号树 源代码: #include<cstdio> #include<cctype> #include<vector> inline int ...
- CSP2019 括号树
Description: 给定括号树,每个节点都是 ( 或 ) ,定义节点的权值为根到该节点的简单路径所构成的括号序列中不同合法子串的个数(子串需要连续,子串所在的位置不同即为不同.)与节点编号的乘积 ...
- 2021.08.09 P5658 括号树(树形结构)
2021.08.09 P5658 括号树(树形结构) [P5658 CSP-S2019] 括号树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 太长,在链接中. 分析及代码 ...
- 括号树 noip(csp??) 2019 洛谷 P5658
洛谷AC通道 本题,题目长,但是实际想起来十分简单. 首先,对于树上的每一个后括号,我们很容易知道,他的贡献值等于上一个后括号的贡献值 + 1.(当然,前提是要有人跟他匹配,毕竟题目中要求了,是不同的 ...
- 2019CSP day1t2 括号树
题目背景 本题中合法括号串的定义如下: () 是合法括号串. 如果 A 是合法括号串,则 (A) 是合法括号串. 如果 A,B 是合法括号串,则 AB 是合法括号串. 本题中子串与不同的子串的定义如下 ...
- 【CSP-S 2019】【洛谷P5658】括号树【dfs】【二分】
题目: 题目链接:https://www.luogu.org/problem/P5658?contestId=24103 本题中合法括号串的定义如下: () 是合法括号串. 如果 A 是合法括号串,则 ...
- 【NOIP/CSP2019】D1T2 括号树
原题: 因为是NOIP题,所以首先先看特殊数据,前35分是一条长度不超过2000的链,N^2枚举所有子区间暴力check就能拿到分 其次可以思考特殊情况,一条链的情况怎么做 OI系列赛事的特殊性质分很 ...
随机推荐
- jQuery判断checkbox是否选中的4种方法
方法一: ).checked) { // do something } 方法二: if($('#checkbox-id').is(':checked')) { // do something } 方法 ...
- PHP curl_multi_select函数
curl_multi_select — 等待所有cURL批处理中的活动连接 说明 int curl_multi_select ( resource $mh [, float $timeout = 1. ...
- 「NOI2016」区间 解题报告
「NOI2016」区间 最近思维好僵硬啊... 一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护. 于是想研究性质,想到为 ...
- JMeter 阶梯式加压测试插件 Stepping Thread Group
在日常性能测试过程中,有时需要对被测对象不断的增加压力,直至达到某个值后,并持续运行一段时间.这里将借助jmeter插件模拟这种情况. 本文介绍在jmeter中,使用插件Stepping Thread ...
- Spring学习笔记第一篇——初识Spring
1.简单介绍 spring的ioc底层是先配置xml文件,接着创建工厂,利用dom4j解析配置文件,最后通过反射完成.大概步骤差不多这样,这些具体代码spring帮你完成了.现在我们只需要配置xml和 ...
- jmeter之--断言json响应&json path espressions的语法
一.提取所需要断言的内容: 响应数据如下:加入需要提取id为90的值 { , "name" : "python", "url" : &quo ...
- ThinkPHP5使用jwt进行会话验证
以往,没有做过前后端分离的项目之前,都是服务器渲染的模板,然后用cookie和session进行账号的权限验证或者是登录状态的管理.后来接触了vue和小程序之后,在进行前后端分离的时候,就会遇到权限验 ...
- gradle打成jar包报错 "错误: 找不到或无法加载主类 App"(已经配置过主类)
文章目录 将gradle打成jar包(包括依赖) 运行jar包 报错 原因(src自己手动创建的) 解决(添加src目录) 将gradle打成jar包(包括依赖) jar { manifest { a ...
- intellij IDEA2016如何打可执行的jar包
尊重版权,原文地址:https://blog.csdn.net/liufeilong_sean/article/details/75254875 操作步骤: 1.在File -> project ...
- (转)Adaboost
基本原理 Adaboost算法基本原理就是将多个弱分类器(弱分类器一般选用单层决策树)进行合理的结合,使其成为一个强分类器. Adaboost采用迭代的思想,每次迭代只训练一个弱分类器,训练好的弱分类 ...