Codeforces 340B - Maximal Area Quadrilateral (计算几何)
Codeforces Round #198 (Div. 2)
题目链接:Maximal Area Quadrilateral
Iahub has drawn a set of \(n\) points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.
Input
The first line contains integer \(n (4 \le n \le 300)\). Each of the next \(n\) lines contains two integers: \(x_i, y_i ( - 1000 \le xi, yi \le 1000)\) — the cartesian coordinates of ith special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide.
Output
Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed \(10 ^{- 9}\).
Examples
input
5
0 0
0 4
4 0
4 4
2 3
output
16.000000
Note
In the test example we can choose first \(4\) points to be the vertices of the quadrilateral. They form a square by side \(4\), so the area is \(4\cdot 4 = 16\).
Solution
题意
给定 \(n\) 个点的坐标,选择其中 \(4\) 个点构成四边形,求最大四边形面积。
题解
四边形的面积等于两个三角形面积的和。枚举四边形的对角线,以及左右两边的点,选择两个面积最大的三角形,更新 \(ans\)。
三重循环枚举,时间复杂度 \(O(n^3)\)。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const int maxn = 300 + 5;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
};
typedef Point Vector;
vector<Point> p;
map<pair<int, int>, int> mp;
int main() {
double ans = 0;
int n;
scanf("%d", &n);
for(int i = 0; i < n; ++i) {
Point tmp;
tmp.input();
p.push_back(tmp);
}
sort(p.begin(), p.end());
for(int i = 0; i < p.size(); ++i) {
for(int j = i + 1; j < p.size(); ++j) {
if(!mp[{i, j}]) {
mp[{i, j}] = 1;
double s1 = 0, s2 = 0;
for(int k = 0; k < p.size(); ++k) {
if(k == i || k == j) continue;
if(dcmp((p[j] - p[i]).cross(p[k] - p[i])) > 0) {
s1 = max(s1, fabs((p[j] - p[i]).cross(p[k] - p[i])) * 0.5);
} else {
s2 = max(s2, fabs((p[j] - p[i]).cross(p[k] - p[i])) * 0.5);
}
}
if(dcmp(s1) == 0 || dcmp(s2) == 0) continue;
ans = max(ans, s1 + s2);
}
}
}
printf("%.10lf\n", ans);
return 0;
}
Codeforces 340B - Maximal Area Quadrilateral (计算几何)的更多相关文章
- codeforces 340B Maximal Area Quadrilateral(叉积)
事实再一次证明:本小菜在计算几何上就是个渣= = 题意:平面上n个点(n<=300),问任意四个点组成的四边形(保证四条边不相交)的最大面积是多少. 分析: 1.第一思路是枚举四个点,以O(n4 ...
- Maximal Area Quadrilateral CodeForces - 340B || 三点坐标求三角形面积
Maximal Area Quadrilateral CodeForces - 340B 三点坐标求三角形面积(可以带正负,表示向量/点的不同相对位置): http://www.cnblogs.com ...
- Codeforces Round #198 (Div. 2) B. Maximal Area Quadrilateral
B. Maximal Area Quadrilateral time limit per test 1 second memory limit per test 256 megabytes input ...
- 【codeforces 340B】Maximal Area Quadrilateral
[题目链接]:http://codeforces.com/problemset/problem/340/B [题意] 给你n个点,让你在这里面找4个点构成一个四边形; 求出最大四边形的面积; [题解] ...
- codeforces 803C Maximal GCD(GCD数学)
Maximal GCD 题目链接:http://codeforces.com/contest/803/problem/C 题目大意: 给你n,k(1<=n,k<=1e10). 要你输出k个 ...
- Codeforces 803C. Maximal GCD 二分
C. Maximal GCD time limit per test: 1 second memory limit per test: 256 megabytes input: standard in ...
- 2018.07.04 POJ 1265 Area(计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...
- hdu 2528:Area(计算几何,求线段与直线交点 + 求多边形面积)
Area Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- CodeForces C. Maximal Intersection
http://codeforces.com/contest/1029/problem/C You are given nn segments on a number line; each endpoi ...
随机推荐
- QC10迁移到ALM11
转自原作者 http://blog.csdn.net/yhqun/article/details/6981250 服务器A:QC9或QC10服务器B:QC9或QC10 DB Server服务器C:AL ...
- tp5.0如何获取header的Authorization值
tp5.0如何获取header的Authorization值$request->header();好像没有这个值的但是发送请求头部有的 解决方案: 在.htaccess 文件中加入 设置 Set ...
- Mybatis笔记 - SQL标签方法
Mpper.xml映射文件中定义了操作数据库的sql,并且提供了各种标签方法实现动态拼接sql.每个sql是一个statement,映射文件是mybatis的核心. 一.内容标签 1.NamePlac ...
- layui.form小例子
layui.form小例子 需要引入layui的包 <!doctype html> <html> <head> <meta charset="utf ...
- spring mvc 程序
首先我们的界面在返回的时候回根据我们的配置信息进行路径的查找 然后会识别我们的控制器返回的字符串(其实就是界面的名字)而找到界面的信息,eg:如果我们返回的是success那么就会去找我们的WEB- ...
- docker--image的获取
image有几种获取方式: 1.Docker官方提供了一种文件格式:Dockerfile,通过这种格式的文件,我们可以定义一个image,然后通过Dockerfile我们可以构建(build)一个im ...
- Mint安装配置Sublime Text3
1.注册码: Sublime Text 3 3126 注册码 2.安装Package Control组件: 按Ctrl+`调出console(注:安装有QQ输入法的这个快捷键会有冲突的,输入法属性设置 ...
- vue - blog开发学习3
1.添加less 和less-loader支持 npm install less less-loader --save-dev 2.新建main.less,将这个样式添加到home.vue中的cont ...
- vue - blog开发学习1
1.安装vue-cli vue intall -g vue-cli 2.创建项目 vue init webpack nblog 3.按提示要求配置项目 ? Project name nblog ? P ...
- C语言注意事项
#include <stdio.h> int main() { /*********************************************** * 指针使用注意事项: * ...