[APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)

题面

分析

考试的时候就感觉子任务4是突破口,结果却写了个Kruskal重构树,然后一直想怎么在线用数据结构维护

实际上是离线算法。考虑只有查询的时候。我们可以离线对查询的权值从大到小排序,边也按边权从大到小排序,然后对于权值比询问大的边,把边两端结点集合合并。答案就是查询点所在点集的大小。只需要用并查集维护,然后双指针扫描,由于一条边只会被加进去一次,时间复杂度为$ O(n\log n)$

考虑有修改的情况。所以我们可以对查询分块(按时间每B个询问分为一块),然后对每个块里的询问按上述方法暴力维护。最后还要更新块内修改操作,因为这些修改会对下一块有影响。注意修改会影响点集联通情况,用可撤销的并查集维护。.(因为每次操作都要把m条边扫描一遍).总复杂度\(O(q\sqrt {q \log n} )\)

细节较多,注释见代码

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 500000
#define maxm 1000000
#define bsz 1000
using namespace std;
inline void qread(int &x){
x=0;
int sign=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0';
c=getchar();
}
x=x*sign;
}
inline void qprint(int x){
if(x<0){
putchar('-');
qprint(-x);
}else if(x==0){
putchar('0');
return;
}else{
if(x>=10) qprint(x/10);
putchar(x%10+'0');
}
} int n,m,q;
struct edge{
int from;
int to;
int val;
int id;
}E[maxm+5]; int fa[maxn+5];
int sz[maxn+5];
int find(int x){
// printf("%d\n",x);
if(fa[x]==x) return x;
else return find(fa[x]);
}
void ini(int n){
for(int i=1;i<=n;i++){
fa[i]=i;
sz[i]=1;
}
}
int bel[maxn+5];
int lastx[maxm+5],lasty[maxm+5];//用于记录并查集之前状态,回滚时用
void merge(int id){
int x=E[id].from;
int y=E[id].to;
int fx=find(x),fy=find(y);
if(fx!=fy){
if(sz[fx]>sz[fy]) swap(fx,fy);
lastx[id]=fx;
lasty[id]=fy;
fa[fx]=fy;
sz[fy]+=sz[fx];
}
} struct oper{
int type;
int x;
int val;
}in[maxn+5];
struct query{//询问
int id;
int x;
int val;
query(){ }
query(int _id,int _x,int _val){
id=_id;
x=_x;
val=_val;
}
friend bool operator < (query p,query q){
return p.val>q.val;
}
};
vector<query>Q;
struct update{//需要合并的边
int id;
int val;
update(){ }
update(int _id,int _val){
id=_id;
val=_val;
}
friend bool operator < (update p,update q){
return p.val>q.val;
}
};
int ans[maxn+5];
bool vis[maxn+5];//标记哪些边的边权需要修改
bool tmp[maxn+5];//标记当前块需要修改的边
vector<update>U1;//不需要修改,但是需要合并的边
vector<int>U2;//需要修改,需要合并的边
vector<int>back;//回滚用
void rebuild(int last){
for(int i=1;i<=m;i++){
U1.push_back(update(i,E[i].val));
lastx[i]=0;
}
ini(n);
sort(U1.begin(),U1.end());
sort(Q.begin(),Q.end());
for(int i=0,j=0;i<Q.size();i++){////遍历每个询问
back.clear();
while(j<U1.size()&&U1[j].val>=Q[i].val){//双指针找出可以经过的边
if(!vis[U1[j].id]){
merge(U1[j].id);
lastx[U1[j].id]=0;//不需要回滚
}
j++;
}
for(int p=last;p<Q[i].id;p++){
if(in[p].type==1) tmp[in[p].x]=1;
}
for(int p=0;p<U2.size();p++){//修改前边权比当前询问要大,
//由于在后续可能涉及修改,需要进行回滚
if(!tmp[U2[p]]&&Q[i].val<=E[U2[p]].val){
merge(U2[p]);
back.push_back(U2[p]);
}
}
for(int p=Q[i].id;p>=last;p--){
//查询时序之前被修改了,并且修改后边权比当前查询负载要大
//注意:只有修改后边权比当前查询大的边才会进行合并,所以通过from[s[p]]=-1在回撤时过滤掉不符合要求的边
if(in[p].type==1) tmp[in[p].x]=0;//回滚tmp数组
if(in[p].type==2||lastx[in[p].x]) continue;//跳过query
lastx[in[p].x]=-1;
back.push_back(in[p].x);
if(in[p].val>=Q[i].val) merge(in[p].x);//如果修改后变得对答案有影响,就合并
}
ans[Q[i].id]=sz[find(Q[i].x)];
for(int p=back.size()-1;p>=0;p--){//回滚
if(lastx[back[p]]!=-1){
sz[lasty[back[p]]]-=sz[lastx[back[p]]];
fa[lastx[back[p]]]=lastx[back[p]];
}
lastx[back[p]]=0;
}
}
}
int main(){
qread(n);
qread(m);
for(int i=1;i<=m;i++){
qread(E[i].from);
qread(E[i].to);
qread(E[i].val);
E[i].id=i;
}
qread(q);
for(int i=1;i<=q;i++) bel[i]=i/bsz+1;
int last=1;
for(int i=1;i<=q;i++){
qread(in[i].type);
qread(in[i].x);
qread(in[i].val);
if(in[i].type==1){
if(!vis[in[i].x]) U2.push_back(in[i].x);
vis[in[i].x]=1;
}else{
Q.push_back(query(i,in[i].x,in[i].val));
}
if(bel[i]!=bel[i+1]){
///存满一个块,进行一次离线操作
rebuild(last);
while(last<=i){//last记录修改和查询到哪里
vis[in[last].x]=0;
if(in[last].type==1) E[in[last].x].val=in[last].val;
else{
qprint(ans[last]);
putchar('\n');
}
last++;
}
U1.clear();
U2.clear();
Q.clear();
back.clear();
} }
}

[APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)的更多相关文章

  1. P5443 [APIO2019]桥梁 [分块+并查集]

    分块+并查集,大板子,没了. 并查集不路径压缩,可撤销,然后暴力删除 这样对于每个块都是独立的,所以直接搞就行了. 然后块内修改操作搞掉,就是单独的了 // powered by c++11 // b ...

  2. 洛谷P3247 最小公倍数 [HNOI2016] 分块+并查集

    正解:分块+并查集 解题报告: 传送门! 真的好神仙昂QAQ,,,完全想不出来,,,还是太菜了QAQ 首先还是要说下,这题可以用K-D Tree乱搞过去(数据结构是个好东西昂,,,要多学学QAQ),但 ...

  3. [BZOJ4537][HNOI2016]最小公倍数(分块+并查集)

    4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1687  Solved: 607[Submit][Stat ...

  4. BZOJ4320 ShangHai2006 Homework(分块+并查集)

    考虑根号分块.对于<√3e5的模数,每加入一个数就暴力更新最小值:对于>√3e5的模数,由于最多被分成√3e5块,查询时对每一块找最小值,这用一些正常的DS显然可以做到log,但不太跑得过 ...

  5. HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)

    题目链接  2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块.    分块的时候满足每个块是一个 ...

  6. bzoj 4537: [Hnoi2016]最小公倍数 分块+并查集

    题目大意: 给定一张n个点m条边的无向图,每条边有两种权.每次询问某两个点之间是否存在一条路径上的边的两种权的最大值分别等于给定值. n,q <= 50000. m <= 100000 题 ...

  7. Codeforces 506D Mr. Kitayuta's Colorful Graph(分块 + 并查集)

    题目链接  Mr. Kitayuta's Colorful Graph 把每种颜色分开来考虑. 所有的颜色分为两种:涉及的点的个数 $> \sqrt{n}$    涉及的点的个数 $<= ...

  8. 洛谷P4004 Hello world!(分块+并查集)

    传送门 虽然洛谷数据水,然而咱最终还是没有卡过uoj上的毒瘤数据-- 神tm全uoj就3个人过了这题-- 首先,每个数最多被开根\(6\)次,开到\(1\)之后就别管它了,把它用并查集连到它父亲上 它 ...

  9. 并查集 & 最小生成树详细讲解

    并查集 & 最小生成树 并查集 Disjoint Sets 什么是并查集?     并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将 ...

随机推荐

  1. Halcon WPF C#采集图像区域灰度值

    源码下载地址:https://github.com/lizhiqiang0204/ImageGray.git Halcon代码如下: *读取图片,转换成灰度图片 read_image (Image1, ...

  2. Django【第1篇】:Django之MTV模型

    Django框架第一篇基础 一个小问题: 什么是根目录:就是没有路径,只有域名..url(r'^$') 补充一张关于wsgiref模块的图片 一.MTV模型 Django的MTV分别代表: Model ...

  3. SpringBoot---Kafka

    1.实战 <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka --> <dependency> < ...

  4. 【Luogu4221】[WC2018] 州区划分

    题目链接 题目描述 略 Sol 一个州合法就是州内点形成的子图中 不存在欧拉回路(一个点也算欧拉回路). 这个东西显然就状压 dp 一下: 设 \(f[S]\) 表示当前考虑了 \(S\) 这个集合内 ...

  5. man cal

    CAL(1)                                                                  CAL(1) NAME       cal - 显示一个 ...

  6. python补充之进制转换、exec、eval、compile

    目录 eval.exec和compile 1.eval函数 2.exec函数 eval()函数和exec()函数的区别 python中的进制转换 eval.exec和compile 1.eval函数 ...

  7. win10如何设置软件开机启动

    想要实现应用程序在所有的用户登录系统后都能自动启动,就把该应用程序的快捷方式放到“系统启动文件夹”里C:\ProgramData\Microsoft\Windows\Start Menu\Progra ...

  8. 面试题常考&必考之--js中的难点!!!原型链,原型(__proto__),原型对象(prototype)结合例子更易懂

    1>首先,我们先将函数对象认识清楚: 补充snow的另一种写法: var snow =function(){}; 2>其次:就是原型对象 每当我们定义一个函数对象的时候,这个对象中就会包含 ...

  9. luogu 2491 [SDOI2011]消防 / 1099 树网的核 单调队列 + 树上问题

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 300001 #define inf 1000000000 ...

  10. [USACO08FEB]连线游戏Game of Lines

    题目背景 Farmer John最近发明了一个游戏,来考验自命不凡的贝茜. 题目描述 Farmer John has challenged Bessie to the following game: ...