「HAOI 2018」染色
题目链接
\(Solution\)
观察题目发现恰好出现了\(s\)次的颜色有\(k\)种,不太好弄.
所以我们设\(a[i]\)表示为恰好出现了\(s\)次的颜色有至少\(i\)种的方案数,然后容斥一下
我们看一看\(a[i]\)怎么求?
这很明显可以一眼看出来
\]
在\(m\)个颜色中选则\(i\)个,在\(n\)个位置选择\(i*s\)个,将这\(i*s\)个数全排列(有重复元素),剩下的位置随便选
算完这个以后可以开始容斥求答案,设答案数组为\(F[i]\)
\]
再将组合数拆开:
\]
\]
令\(f[i]=\frac{(-1)^{i}}{(i)!},g[i]=a[j]*j!\)
所以原式为:
\]
然后将\(f\)数组翻转,原式为:
\]
然后发现\(j\)从\(1\)开始对答案没有影响,这又是个卷积,又因为有\(\%\)数,所以直接\(ntt\)求即可
\(Code\)
#include<iostream>
#include<cstdlib>
#include<cstdio>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
const int mod=1004535809;
const int N=10000001+10;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
int f[N],g[N],r[N],limit=1,w[N],inv[N],jc[N];
int ksm(int a,int b){
int ans=1;
while(b){
if(b&1) ans=ans*a%mod;
a=a*a%mod,b>>=1;
}
return ans;
}
void fft(int *a,int opt){
for(int i=0;i<=limit;i++)
if(i<r[i])
swap(a[i],a[r[i]]);
for(int i=1;i<limit;i<<=1){
int w=ksm(3,(mod-1)/(i*2));
if(opt==-1) w=ksm(w,mod-2);
for(int j=0;j<limit;j+=i<<1){
int l=1;
for(int k=j;k<j+i;k++){
int p=l*a[k+i]%mod;
a[k+i]=(a[k]-p+mod)%mod;
a[k]=(a[k]+p)%mod;
l=l*w%mod;
}
}
}
}
int C(int n,int m){
return jc[n]*inv[m]%mod*inv[n-m]%mod;
}
main(){
int n=read(),m=read(),s=read(),l=0,M=min(m,n/s),ans=0;
for(int i=0;i<=m;i++)
w[i]=read();
while(limit<=M<<1)
limit<<=1,l++;
jc[0]=1;
for(int i=1;i<=max(n,m);i++)
jc[i]=jc[i-1]*i%mod;
inv[max(n,m)]=ksm(jc[max(n,m)],mod-2);
for(int i=max(n,m)-1;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
for(int i=0;i<=M;i++)
g[i]=C(m,i)*C(n,i*s)%mod*jc[s*i]%mod*ksm(inv[s],i)%mod*ksm(m-i,n-i*s)%mod;
for(int i=0;i<=M;i++){
g[i]=g[i]*jc[i]%mod;
f[M-i]=(ksm(-1,i)*inv[i]+mod)%mod;
}
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
fft(f,1),fft(g,1);
for(int i=0;i<limit;i++)
f[i]=f[i]*g[i]%mod;
fft(f,-1);
for(int i=0;i<=M;i++)
ans=(ans+f[i+M]*ksm(limit,mod-2)%mod*inv[i]%mod*w[i]%mod)%mod;
printf("%lld",ans);
}
「HAOI 2018」染色的更多相关文章
- Solution -「HAOI 2018」「洛谷 P4491」染色
\(\mathcal{Description}\) Link. 用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- 「TJOI 2018」教科书般的亵渎
「TJOI 2018」教科书般的亵渎 题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为 \(a_i\) ,且每个怪物血量均不相同, 小豆手里有无限张"亵渎" ...
- 「TJOI 2018」游园会 Party
「TJOI 2018」游园会 Party 题目描述 小豆参加了 \(NOI\) 的游园会,会场上每完成一个项目就会获得一个奖章,奖章只会是 \(N, O, I\) 的字样. 在会场上他收集到了 \(K ...
- 「SDOI 2018」反回文串
题目大意: 求字符集大小为$k$长度为$n$的经循环移位后为回文串的数量. 题解: 这题是D1里最神的吧 考虑一个长度为$n$回文串,将其循环移位后所有的串都是满足要求的串. 但是显然这样计算会算重. ...
随机推荐
- Python模拟进度条
import time for i in range(0,101,2) time.sleep(0.2) num = i // 2 per = '\r %s %% : %s'%(i,'*'*num) p ...
- Python简单主机批量管理工具
一.程序介绍 需求: 简单主机批量管理工具 需求: 1.主机分组 2.主机信息使用配置文件 3.可批量执行命令.发送文件,结果实时返回 4.主机用户名密码.端口可以不同 5.执行远程命令使用param ...
- 使用.NET Core创建Windows服务(一) - 使用官方推荐方式
原文:使用.NET Core创建Windows服务(一) - 使用官方推荐方式 原文:Creating Windows Services In .NET Core – Part 1 – The &qu ...
- Centos7:tomcat8.5安装,配置及使用
1.解压缩 2.启动 ./startup.sh//启动 ./shutdown.sh//关闭 tail -f ../logs/catalina.out//查看日志
- IOS手机伪类a:active失效
IOS手机伪类a:active失效:点击更改颜色,松开恢复 解决方案:OS系统的移动设备中,需要在按钮元素或body/html上绑定一个touchstart事件才能激活:active状态 docume ...
- Nginx安装目录详解
Nginx安装目录详解 1. 查看有关nginx的所有目录列表,输入命令 rpm -ql nginx 可以查看有关nginx目录信息,但是注意 这种命令只能是在基于yum安装的方式才可以. 2. 下 ...
- 设置Linux之CentOS7的网络的两种方式动态IP+静态IP
1 动态IP 参考之前的文章 点击进入 2 静态IP vi /etc/sysconfig/network-scripts/ifcfg-ens33 详情配置如下,上面半部分是我之前的动态IP的设置 静态 ...
- Linux系统文件系统及文件基础篇
学习Linux,重难点在于掌握不同类别的文件系统及其作用.通过对Linux系统的安装,我们首先来了解下Linux系统里各个目录文件夹下的大致功能:主要的目录树的有/./root./home./usr. ...
- 单节点oracle、ASM 详细安装步骤
目录 1.安装环境 2.系统要求 2.1 Linux安装Oracle系统要求 1.查看RAM和交换空间以及磁盘大小 2.检查所需软件包 3.配置host和主机名 2.2修改操作系统核心参数 1.创建相 ...
- Vue自行封装常用组件-文本提示
使用方法:1.在父组件中引入"toast.vue" //import toast from "./toast"; 2.在父组件中注册 toast //compo ...