拿到这个问题,我们从头开始思考。

我们把序列看做两部分,一部分在前表示待排序的,记为序列1,一部分在后表示已排序的,记为序列2

因为序列2在后,所以不必担心它影响序列1的排序,那么对于序列1的第一个元素,显然珂以放到序列2的某个对应位置,使序列2仍然保持有序

那么很简单,我们发现只需要将序列1每个元素都移动一次即可完成排序,这显然是最优的

讲一下初始化,对于序列2,我们发现显然从最后一个逆序对的第二个元素开始一直到序列的最后一个元素珂以直接作为序列2的,那么剩下的元素按原来的顺序放入序列1,接下来我们珂以直接模拟这个操作。

目前的复杂度是\(\Theta(n^2)\),显然对于本题来说无法通过。

那么消耗时间比较多的部分是什么呢?就是如何找到序列1的第一个元素在序列2中的对应位置(换而言之就是计算答案)。

我们需要在\(\Theta(log_2n)\)的时间内求出序列1的第一个元素在序列2中的对应位置(为什么是\(\Theta(log_2n)\)而不是\(\Theta(1)\)看数据范围就知道啦)。首先我们发现序列2是有序的,无需模拟,然后怎么做呢?基于\(\Theta(log_2n)\)的复杂度,我们想到了神奇的树状数组,开始在序列2中的所有元素的位置上插入一个1,然后对于序列1的第i个元素,记为\(a_i\),我们只需要查询\([1,a_i)\)有几个数就知道答案了,然后再往\(a_i\)的位置上插入一个1,持续模拟即可。

好了放个代码

#include <cstdio>
#include <vector>
#define ll long long using namespace std; ll read(){
ll x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
} int p[100005];
int fen[100005]; #define lowbit(x) (x&(-x)) int n; void add(int pos){
for ( ; pos <= n; pos += lowbit(pos)) ++fen[pos];
} int query(int pos){
int sum = 0;
for ( ; pos; pos -= lowbit(pos)) sum += fen[pos];
return sum;
} vector<int> ans(0); int main(){
n = read(); bool flg = 1;
for (int i = 1; i <= n; ++i){
p[i] = read();
if (p[i] != i) flg = 0;
}
if (flg){puts("0"); return 0;}
int i;
for (i = n; i >= 1; --i)
if (p[i] < p[i - 1])
break;
for (int j = i; j <= n; ++j)
add(p[j]);
for (int j = 1; j < i; ++j){
ans.push_back(query(p[j]) + i - j - 1);
add(p[j]);
}
printf("%d\n", ans.size());
for (int j = 0; j < ans.size(); ++j)
printf("%d%c", ans[j], ((j == ans.size() - 1) ? '\n' : ' '));
return 0;
}

[USACO2019JAN]Sleepy Cow Sorting题解的更多相关文章

  1. 树状数组 || 线段树 || Luogu P5200 [USACO19JAN]Sleepy Cow Sorting

    题面:P5200 [USACO19JAN]Sleepy Cow Sorting 题解: 最小操作次数(记为k)即为将序列倒着找第一个P[i]>P[i+1]的下标,然后将序列分成三部分:前缀部分( ...

  2. LG5200 「USACO2019JAN」Sleepy Cow Sorting 树状数组

    \(\mathrm{Sleepy Cow Sorting}\) 问题描述 LG5200 题解 树状数组. 设\(c[i]\)代表\([1,i]\)中归位数. 显然最终的目的是将整个序列排序为一个上升序 ...

  3. P5200 [USACO19JAN]Sleepy Cow Sorting

    P5200 [USACO19JAN]Sleepy Cow Sorting 题目描述 Farmer John正在尝试将他的N头奶牛(1≤N≤10^5),方便起见编号为1…N,在她们前往牧草地吃早餐之前排 ...

  4. P5200 [USACO19JAN]Sleepy Cow Sorting 牛客假日团队赛6 D 迷路的牛 (贪心)

    链接:https://ac.nowcoder.com/acm/contest/993/E 来源:牛客网 对牛排序 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言 ...

  5. BZOJ1697: [Usaco2007 Feb]Cow Sorting牛排序

    1697: [Usaco2007 Feb]Cow Sorting牛排序 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 387  Solved: 215[S ...

  6. Cow Sorting(置换群)

    Cow Sorting Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6664   Accepted: 2602 Descr ...

  7. hdu 2838 Cow Sorting 树状数组求所有比x小的数的个数

    Cow Sorting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  8. HDU Cow Sorting (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2838 Cow Sorting Problem Description Sherlock's N (1  ...

  9. hdu 2838 Cow Sorting(树状数组)

    Cow Sorting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. 【MM系列】SAP MM模块-关于批次特性的查看和获取

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-关于批次特性的查看 ...

  2. Kibana开启中文语言

    Kibana在6.7以后的版本,支持了多种语言.并且自带在安装包里. 开启方式: 找到Kibana配置文件所在:config/kibana.yml找到配置:i18n.locale: "en& ...

  3. python可视化:matplotlib系列

    matplotlib 的官方文档: https://matplotlib.org/users/index.html 1 子图布局管理 布局参数 紧密布局的方法 坐标轴的公用和隐藏 2 直方图bar和b ...

  4. Larkin’s NOI

    Larkin’s NOI Problem Description Larkin has been to Yantai to take part in NOI 2010!众所周知(do you know ...

  5. .net 与directX

    微软早期出过managed assembly.但后来因为XXX的原因,没有继续出,只支持c++了..net的开发者就哭了.这篇博客解释了前世今生: https://blogs.msdn.microso ...

  6. Python中对 文件 的各种骚操作

    Python中对 文件 的各种骚操作 python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getc ...

  7. Docker 镜像的常用操作

    镜像作为 Docker 三大核心概念中,最重要的一个关键词,它有很多操作,是您想学习容器技术不得不掌握的.本文将带您一步一步,图文并重,上手操作来学习它. 目录 一 Docker 下载镜像 1.1 下 ...

  8. vuex介绍和vuex数据传输流程

    1.什么是vuex? 公共状态管理:解决多个非父子组件传值麻烦的问题:简单说就是多个页面都能用Vuex中store公共的数据 a.并不是所有的数据都要放在Vuex中,只有各个组件公用的一些数据会放在V ...

  9. B/S,C/S架构的区别

    B/S架构:browser/server,采用的是浏览器服务器模式. C/S架构:client/server,采用的是客户端服务器模式. B/S架构,客户端是浏览器基本不需要维护,只需要维护升级服务器 ...

  10. 你不知道的props和state

    State 与 Props 区别props 是组件对外的接口,state 是组件对内的接口.组件内可以引用其他组件,组件之间的引用形成了一个树状结构(组件树),如果下层组件需要使用上层组件的数据或方法 ...