[luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)
[luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)
题面
略
分析
首先考虑容斥,求出有i堆人讨论的方案。
可以用捆绑法,把每堆4个人捆绑成一组,其他人每个人一组。这样一共有\(n-3i\)组(这些组可以被看成相同的点)。
我们从中选出n-4i个点,这些点展开成1个人,其他\(i\)个点展开成4个人。那么方案数就是\(C_{n-3i}^{n-4i}\)
由于\(i\)堆人的喜好已经确定,最终答案为\(\sum_{i=0}^n (-1)^i \times C_{n-3i}^{n-4i} \times (n-4i个单独的人的喜好方案数)\)
那么我们就需要求n-4i个单独的人的喜好方案数。每种喜好的人各有\(a-i,b-i,c-i,d-i\)。假如这些人里每种喜好的人各有\(x,y,z,w(x \leq a-i,y \leq b-i,z \leq c-i,w \leq d-i,x+y+z+w=n-4i)\)个。这是一个有重复元素的排列问题。答案是\(\frac{(n-4i)!}{x!y!z!w!}\)
直接枚举的时间复杂度为\(O(k^4)\),(\(k=\min(a,b,c,d)\)),下同。显然会超时。我们可以用折半搜索的思想,先枚举前两个的个数\(x,y\),把\(\frac{1}{x!y!}\)的和记录在\(cnt[x+y]\)中。然后枚举\(z,w\),只要每次答案累加上\(z!\times w! \times cnt[n-4i-(z+w)]\)即可。时间复杂度\(O(k^2)\)
总时间复杂度\(O(nk^2)\)
代码
//鸡你太美!
#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 998244353
#define maxn 1000
using namespace std;
typedef long long ll;
inline ll fast_pow(ll x,ll k){
ll ans=1;
while(k){
if(k&1) ans=ans*x%mod;
x=x*x%mod;
k>>=1;
}
return ans;
}
inline ll inv(ll x){
return fast_pow(x,mod-2);
}
int n,a,b,c,d;
ll fact[maxn+5],invfact[maxn+5];
void ini(){
fact[0]=1;
for(int i=1;i<=n;i++) fact[i]=fact[i-1]*i%mod;
invfact[n]=inv(fact[n]);
for(int i=n-1;i>=0;i--) invfact[i]=invfact[i+1]*(i+1)%mod;
}
inline ll C(ll n,ll m){
return fact[n]*invfact[n-m]%mod*invfact[m]%mod;
}
ll cnt[maxn+5];
int main(){
scanf("%d",&n);
scanf("%d %d %d %d",&a,&b,&c,&d);
ini();
int mx=min(min(a,b),min(c,d));
ll ans=0;
for(int i=0;i<=n/4&&i<=mx;i++){
memset(cnt,0,sizeof(cnt));
//可重排列((a+b+c+d)!)(a!b!c!d!)
//类似中途相遇分两半求解
for(int j=0;j<=a-i;j++){
for(int k=0;k<=b-i;k++){
cnt[j+k]=(cnt[j+k]+invfact[j]*invfact[k]%mod)%mod;
}
}
ll sum=0;
for(int j=0;j<=c-i;j++){
for(int k=0;k<=d-i&&j+k<=n-4*i;k++){
sum=(sum+cnt[n-4*i-(j+k)]*invfact[j]%mod*invfact[k]%mod)%mod;
}
}
sum=sum*fact[n-4*i]%mod;
//捆绑法,把4个一组的捆绑成1个,共n-3i个
//再从中选出n-4i个单独1个的,其他展开
//C(n-3i,n-4i)
ans+=fast_pow(-1,i)*C(n-3*i,n-4*i)*sum%mod;
ans=(ans+mod)%mod;
}
printf("%lld\n",ans);
}
[luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)的更多相关文章
- [bzoj5510]唱跳rap和篮球
显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况-- 考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于 ...
- Luogu5339 [TJOI2019]唱、跳、rap和篮球 【生成函数,NTT】
当时看到这道题的时候我的脑子可能是这样的: My left brain has nothing right, and my right brain has nothing left. 总之,看到&qu ...
- [TJOI2019]唱、跳、rap和篮球——容斥原理+生成函数
先附一组sd图 然后放上原题链接 注意,队伍不同指的是喜好不同,不是人不同 先想到\(DP\),然后你会发现并没有什么优秀的状态设计,然后我们考虑容斥 设\(lim\)表示选的癌坤组数的上限,\(f_ ...
- [LOJ3106][TJOI2019]唱、跳、rap和篮球:DP+生成函数+NTT+容斥原理
分析 令\(f(i)\)表示共\(i\)组同学讨论cxk的位置的方案数(不考虑其他位置上的人的爱好),这个数组可以很容易地通过依次考虑每个位置是否是四个人中最后一个人的位置来递推求解,时间复杂度\(O ...
- 将Android手机无线连接到Ubuntu实现唱跳Rap
您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...
- [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt
[TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...
- [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥
题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...
- 「TJOI2019」唱、跳、rap 和篮球 题解
题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...
- 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...
随机推荐
- 【NOIP2016提高A组集训第14场11.12】随机游走
题目 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己是不 ...
- spark性能调优点(逐步完善)
1.使用高性能序列化类库2.优化数据结构3.对多次使用的RDD进行持久化/CheckPoint4.使用序列化的持久化级别5.Java虚拟机垃圾回收调优 降低RDD缓存占用空间的比例:new Spark ...
- Java——序列化 反序列化
记录一下: 先粘两个比较繁琐的方法: put: public void putSerializableObject(String key, Object value, int expireTime) ...
- Nginx之概念和简介
Nginx是什么? 代理服务器,处于客户端和服务器端之间的一台服务器,不负责处理请求. 主要作用是什么? 1.负载均衡: 高并发场景下,Nginx代理服务器按一定规则将请求分发,从而使服务器能有条不紊 ...
- Haproxy-4层和7层代理负载实战
目录 HAProxy是什么 HAProxy的核心能力和关键特性 HAProxy的核心功能 HAProxy的关键特性 HAProxy的安装和运行 安装 运行 添加日志 使用HAProxy搭建L7负载均衡 ...
- npm 和 cnpm 区别
来源:https ://blog.csdn.net/shelly1072/article/details/51524029 NPM介绍: 说明:NPM(节点包管理器)是的NodeJS的包管理器,用于节 ...
- springboot 出现异常 java.net.BindException: Address already in use: bind
java.net.BindException: Address already in use: bind
- GIL与event事件讲解
一.GIL全局解释器锁 global interpreter lock 1.GIL是一个互斥锁:保证数据的安全(以牺牲效率来换取数据的安全),阻止同一个进程内多个线程同时执行(不能并行但是能够实现并发 ...
- sqli-lab(37)
0X01 看看源码 what is mean? 定义和用法 mysql_real_escape_string() 函数转义 SQL 语句中使用的字符串中的特殊字符. 下列字符受影响: \x00 \n ...
- JS中集合对象(Array、Map、Set)及类数组对象的使用与对比(转载)
在使用js编程的时候,常常会用到集合对象,集合对象其实是一种泛型,在js中没有明确的规定其内元素的类型,但在强类型语言譬如Java中泛型强制要求指定类型. ES6引入了iterable类型,Array ...