Problem Description
Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.

A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.

Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.

 
Input
The first line contains only one integer T (T ≤ 105), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).
Each of the following two lines contains two integers xi, yi (0 ≤ xi, yi ≤ 20) indicating the coordinates of the center of each ring.
 
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.
Sample Input
2
2 3
0 0
0 0
2 3
0 0
5 0
Sample Output
Case #1: 15.707963
Case #2: 2.250778
 
两个圆环相交,然而我只有圆相交的板子
首先拿其中一个大圆A与另一个大圆B和小圆b算交面积,两者相减,求的是A与圆环Bb相交的面积 area1
然后拿小圆a另一个大圆B和小圆b算交面积,两者相减,求的是a与圆环Bb相交的面积,area2
我们输出area1-area2就行了
 #include <bits/stdc++.h>

 using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-;
int dblcmp (double k)
{
if (fabs(k)<eps) return ;
return k>?:-;
}
struct Point
{
double x,y;
};
double dis (Point a,Point b)
{
return sqrt( (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double area_of_overlap (Point c1,double r1,Point c2,double r2)//圆相交模板
{
double d = dis(c1,c2);
if (r1+r2<d+eps) return ;
if (d<fabs(r1-r2)+eps){
double r = min(r1,r2);
return PI*r*r;
}
double x = (d*d+r1*r1-r2*r2)/(*d);
double t1 = acos(x/r1);
double t2 = acos((d-x)/r2);
return r1*r1*t1+r2*r2*t2-d*r1*sin(t1);
}
int t;
int casee = ;
int main()
{
//freopen("de.txt","r",stdin);
scanf("%d",&t);
while (t--){
Point p1,p2;
double r1,r2;
scanf("%lf%lf",&r1,&r2);
scanf("%lf%lf",&p1.x,&p1.y);
scanf("%lf%lf",&p2.x,&p2.y);
if (dblcmp(r1-r2)>) swap(r1,r2);
double ans = area_of_overlap (p1,r2,p2,r2) -area_of_overlap (p1,r2,p2,r1)
-(area_of_overlap (p1,r1,p2,r2) - area_of_overlap(p1,r1,p2,r1) );
/*double ans = area (p1,r2,p2,r2) -area (p1,r2,p2,r1)
-(area(p1,r1,p2,r2) - area(p1,r1,p2,r1) );*/
printf("Case #%d: %.6f\n",++casee,ans);
}
return ;
}
 

hdu 5120 Intersection (圆环面积相交->圆面积相交)的更多相关文章

  1. hdu 5120 Intersection 圆环面积交

    Intersection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5 ...

  2. hdoj 5120 Intersection 圆环面积求交

    Intersection Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) Tota ...

  3. hdu 5120(2014北京—求圆相交)

    题意:求环的相交面积 思路: 通过画图可知,面积= 大圆相交面积 - 大小圆相交面积*2 + 小小圆相交面积  再通过圆相交模板计算即可 #include <iostream> #incl ...

  4. HDU 5120 Intersection (圆的面积交)

    题意:给定两个圆环,求两个圆环的面积交. 析:很容易知道,圆环面积交就是,大圆与大圆面积交 - 大圆和小圆面积交 - 小圆和大圆面积交 + 小圆和小圆面积交. 代码如下: #pragma commen ...

  5. hdu 5120 Intersection

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 A ring is a 2-D figure bounded by two circles sh ...

  6. hdu 5120 Intersection 两个圆的面积交

    Intersection Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) P ...

  7. HDU 5120 Intersection(2014北京赛区现场赛I题 计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 解题报告:给你两个完全相同的圆环,要你求这两个圆环相交的部分面积是多少? 题意看了好久没懂.圆环 ...

  8. HDU 5120 Intersection(几何模板题)

    题意:给定两个圆环,求两个圆环相交的面积. 思路:由于圆心和半径不一样,分了好多种情况,后来发现只要把两个圆相交的函数写好之后就不需要那么复杂了.两个圆相交的面积的模板如下: double area_ ...

  9. 计算几何(容斥原理,圆交):HDU 5120 Intersection

    Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The followin ...

随机推荐

  1. p4593 [TJOI2018]教科书般的亵渎

    分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...

  2. scrapy电影天堂实战(一)创建数据库

    原文链接 这里的排版没微信公众号那么友好,建议查看公众号原文 创建数据库 首先我们需要创建数据库和表等来存储数据 创建mysql.cnf配置文件 oot@ubuntu:/mnt/test_scrapy ...

  3. FTP 服务器搭建(基于 CentOS 7)

    参考资料: 檔案伺服器之三: FTP 伺服器 用 vsftpd 配置FTP服务器 vsftpd 的所有选项 注意,如果要所有人同时编辑 FTP 上的所有文件,可以将 vsftpd.conf 配置文件中 ...

  4. c++函数overload 的歧义匹配

    https://www.zhihu.com/question/20200615 函数重载选择最佳匹配函数涉及到类型转换,默认参数 注意:没有int f(int,int)版本,编译器认为上面两个函数都是 ...

  5. JS基础(上)

    JS与DOM的关系 浏览器有渲染html代码的功能,把html源码(如div,p标签等)在内存里形成一个DOM对象 文档对象模型DOM(Document Object Model)定义访问和处理HTM ...

  6. JS正则表达式校验金额

    //任意正整数,正小数(小数位不超过2位) var isNum=/^(([1-9][0-9]*)|(([0]\.\d{1,2}|[1-9][0-9]*\.\d{1,2})))$/; var num = ...

  7. mybatis动态注解sql编写注意事项

    最近在编写mybatis的动态注解sql遇到了不少的坑,在网上看到一篇讲的比较详细的文章,记录一下: https://mbd.baidu.com/newspage/data/landingshare? ...

  8. Django文件上传下载与富文本编辑框

    django文件上传下载 上传 配置settings.py # 设定文件的访问路径,如:访问http://127.0.0.1:8000/media/就可以获取文件 MEDIA_URL = '/medi ...

  9. [原]__ASSEMBLY__的用途

    在Linux Kernel中有些constant需要被C code 跟 assembler共同使用 在用constant的時候,不能單方面給0x1000UL因為assembler無法看這東西. 但是C ...

  10. 【转】通俗理解Java序列化与反序列化

    一.序列化和反序列化的概念 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通常存 ...