【NOIP2017提高A组集训10.21】Fantasy
题目
Y sera 陷入了沉睡,幻境中它梦到一个长度为N 的序列{Ai}。
对于这个序列的每一个子串,定义其幻境值为这个子串的和,现在Y sera 希望选择K 个不同的子串并使得这K 个子串的幻境值之和最大。
然而由于梦境中的种种限制,这些子串的长度必须在L 到R 之间。
你需要告诉她,最大的幻境值之和。
分析
题目要求求出最大的和,那显然就是找出最大的k个子串。
考虑怎么找出最大的k个子串。
我们求一次前缀和,扔进一个可持久化权值线段树上。
然后二分第k大的子串的值mid,枚举子串的开头,对于第i个开头,查询第i+L-1到i+R-1棵权值线段树上子串值大于等于mid的个数。
将大于等于mid的子串总个数与k比较进行二分。
最后用线段树将大于等于二分出来的值的子串的值加起来就是答案。
时间复杂度O(NlogN)。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const int mo=1e9;
const int N=100005;
const int M=10000;
using namespace std;
struct tree
{
int l,r,num;
long long sum;
}tr[N*50];
int a[N],n,k,L,R,rt[N],tot;
long long ans;
int max(int x,int y)
{
return x>y?x:y;
}
int min(int x,int y)
{
return x<y?x:y;
}
void put(int v,int l,int r,int x)
{
tr[v].num++;
tr[v].sum+=1ll*x;
if(l==r) return;
int mid=(1ll*l+r)>>1;
if(x<=mid) tr[++tot]=tr[tr[v].l],tr[v].l=tot,put(tr[v].l,l,mid,x);
else tr[++tot]=tr[tr[v].r],tr[v].r=tot,put(tr[v].r,mid+1,r,x);
}
long long find1(int v,int v1,int l,int r,long long x,int y,int t)
{
if(v==0 || x>y) return 0;
if(l==x && r==y)
{
if(!t) return tr[v].num-tr[v1].num;
else return tr[v].sum-tr[v1].sum;
}
int mid=(1ll*l+r)>>1;
if(y<=mid) return find1(tr[v].l,tr[v1].l,l,mid,x,y,t);
else
if(x>mid) return find1(tr[v].r,tr[v1].r,mid+1,r,x,y,t);
else return find1(tr[v].l,tr[v1].l,l,mid,x,mid,t)+find1(tr[v].r,tr[v1].r,mid+1,r,mid+1,y,t);
}
int main()
{
scanf("%d%d%d%d",&n,&k,&L,&R);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),a[i]+=a[i-1];
a[0]=mo;
for(int i=1;i<=n;i++)
a[i]+=mo,rt[i]=++tot,tr[rt[i]]=tr[rt[i-1]],put(rt[i],0,mo*2,a[i]);
int l=0,r=mo*2;
while(l+1<r)
{
int mid=(1ll*l+r)>>1,cnt=0;
for(int i=1;i<=n && i+L-2<n;i++) cnt=cnt+find1(rt[min(i+R-1,n)],rt[i+L-2],0,mo*2,max(a[i-1]+mid-mo,0),mo*2,0);//-find(rt[i+L-2],0,mo*2,max(a[i-1]+mid-mo,0),mo*2,0);
if(cnt>=k) l=mid;
else r=mid;
}
long long cnt=0;
ans=0;
for(int i=1;i<=n && i+L-2<n;i++)
{
int wz=find1(rt[min(i+R-1,n)],rt[i+L-2],0,mo*2,max(a[i-1]+r-mo,0),mo*2,0);
cnt=cnt+wz;
ans=ans+find1(rt[min(i+R-1,n)],rt[i+L-2],0,mo*2,max(a[i-1]+r-mo,0),mo*2,1)-1ll*wz*a[i-1];
}
if(cnt>=k)
{
ans-=(cnt-1ll*k)*(r-mo);
printf("%lld",ans);
return 0;
}
ans=cnt=0;
for(int i=1;i<=n && i+L-2<n;i++)
{
int wz=find1(rt[min(i+R-1,n)],rt[i+L-2],0,mo*2,max(a[i-1]+l-mo,0),mo*2,0);
cnt=cnt+wz;
ans=ans+find1(rt[min(i+R-1,n)],rt[i+L-2],0,mo*2,max(a[i-1]+l-mo,0),mo*2,1)-1ll*wz*a[i-1];
}
ans-=(cnt-1ll*k)*(l-mo);
printf("%lld",ans);
}
【NOIP2017提高A组集训10.21】Fantasy的更多相关文章
- 【JZOJ5428】【NOIP2017提高A组集训10.27】查询
题目 给出一个长度为n的序列a[] 给出q组询问,每组询问形如\(<x,y>\),求a序列的所有区间中,数字x的出现次数与数字y的出现次数相同的区间有多少个. 分析 我们可以维护一个前缀和 ...
- 5433. 【NOIP2017提高A组集训10.28】图
题目描述 Description 有一个n个点A+B条边的无向连通图,有一变量x,每条边的权值都是一个关于x的简单多项式,其中有A条边的权值是k+x,另外B条边的权值是k-x,如果只保留权值形如k+x ...
- 【JZOJ5439】【NOIP2017提高A组集训10.31】Calculate
题目 分析 对于\[\sum_{i=1}^{n}\lfloor\dfrac{T-B_i}{A_i}\rfloor\] 我们考虑拆开处理,得到 \[\sum_{i=1}^{n}(\lfloor\dfra ...
- 【JZOJ5430】【NOIP2017提高A组集训10.27】图
题目 有一个n个点的无向图,给出m条边,每条边的信息形如\(<x,y,c,r>\) 给出q组询问形如\(<u,v,l,r>\) 接下来解释询问以及边的意义 询问表示,一开始你在 ...
- 5432. 【NOIP2017提高A组集训10.28】三元组
题目 题目大意 给你\(X+Y+Z\)个三元组\((x_i,y_i,z_i)\). 然后选\(X\)个\(x_i\),选\(Y\)个\(y_i\),选\(Z\)个\(z_i\). 每个三元组只能选择其 ...
- [JZOJ 5437] [NOIP2017提高A组集训10.31] Sequence 解题报告 (KMP)
题目链接: http://172.16.0.132/senior/#main/show/5437 题目: 题解: 发现满足上述性质并且仅当A序列的子序列的差分序列与B序列的差分序列相同 于是我们把A变 ...
- 【JZOJ5434】【NOIP2017提高A组集训10.30】Matrix
题目 分析 假设答案为ans, 发现\[k=\sum_{i=1}^{min(n,k)}\lfloor \dfrac{ans}{i} \rfloor\] 于是可以对ans进行二分, 用分块来求出上面的式 ...
- 【NOIP2017提高A组模拟10.7】Adore
题目 小w 偶然间见到了一个DAG. 这个DAG 有m 层,第一层只有一个源点,最后一层只有一个汇点,剩下的每一层都有k 个节点. 现在小w 每次可以取反第i(1 < i < n - 1) ...
- NOIP2017提高A组模拟10.6】Biology
题目 trie 暴力就是对于每个询问的T个字符串 第i个和第i+1个直接个从后暴力枚举每位是否相同, 但这个方法TLE 我们考虑是否可以用更快的方法来求出两个字符串的最长公共后缀. 我们把所有的字符串 ...
随机推荐
- Identification of Encryption Algorithm Using Decision Tree
本文主要做了两件事,一是提出了一种使用C4.5算法生成的决策树来识别密文所使用的加密算法的方法,二是为这一算法设计了一个特征提取系统提取八个特征作为算法的输入,最终实现了70%~75的准确率. 准备工 ...
- [转帖]IBM收购红帽价格是多少?是否会形成垄断企业?会存在什么不安因素?
http://www.techweb.com.cn/it/2019-07-10/2743776.shtml 国产的linux 用centos源的 如何是好呢.. 蓝色巨人IBM官方宣布,已经正式完成对 ...
- sql server如何精准匹配字符中的字符,绝对匹配
举例: 我现在是需要查询这字段里包含1的数据 我如果直接charindex,那么11,12也会被包含. 解决(1): select * from ( select '1,2,12,111' as s ...
- python-连接mysql实例
import pymysql # 创建连接 conn = pymysql.connect(host='192.168.71.140', port=3306, user='root', passwd=' ...
- js实现复制内容到剪贴板
一. 原生js实现,电脑可以用,手机不可以用 1. 必须是 input元素 才可以使用 <input id="code" type="text" valu ...
- 第三篇 jQuery操作DOM
3-1 DOM页面文档 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:/ ...
- 类的函数成员之属性property
属性命名采用Pascal命名方式,每个单词的首字母大写.访问方式与访问类的公共字段类似. /// <summary> /// 字段 /// </summary> private ...
- 权限(rwx)对于目录与文件的意义
1-权限对于目录的意义 首先要明白的是目录主要的内容是记录文件名列表和子目录列表,而不是实际存放数据的地方. r权限:拥有此权限表示可以读取目录结构列表,也就是说可以查看目录下的文件名和子目录名,注意 ...
- Centos7:dubbo监控中心安装,配置和使用
制作dubbo-admin.war文件 下载dubbo-admin https://github.com/alibaba/dubbo 注:2.6版本后源码中不包含dubbo-admin工程 在dubb ...
- access注入
前面有自己总结详细的mysql注入,自己access注入碰到的比较少,虽然比较简单,但是这里做一个总结 union联合查询法: 因为union前后字段数相同,所以可以先用order by 22 使查询 ...