CF 2000 的dp题目还是有点难qwq

题意:

一行有\(n\)个空位,每个空位可以填\([1,4]\)的整数,要求:

1.有\(t\)个位置满足 \(ai−1<ai>ai+1(1<i<n)\)

2.有\(t−1\)个位置满足 \(ai−1>ai<ai+1\)

的方案总数

题解:

设 \(f[i][j][k][0/1]\) 表示 \(i\)位置 当前数是 \(j\) 已经有 \(k\) 个满足条件一的位置 上升/下降趋势

转移:

\[f[i][j][k][0]=\sum f[i-1][l][k][0] + f[i-1][l][k][1] (1<=l<j)
\]

\[f[i][j][k][1]=\sum f[i-1][l][k][1] + f[i-1][l][k-1][0] (j<l<=n)
\]

当 \(k = 0\)时说明还没有顶峰,第二个转移的后面这种情况就是0

Code

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read() {
int x=0,f=1; char ch=getchar();
while(ch<'0' || ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); }
return x * f;
}
const int N = 27;
int n,t;
int f[N][N][N][2]; //f[i][j][k][0/1] 表示 i 位置,j高度,k个峰顶,上升/下降
int main()
{
n = read(), t = read();
f[2][4][0][0] = 3;
f[2][3][0][0] = 2;
f[2][2][0][0] = 1;
for(int i=3;i<=n;++i)
for(int k=0;k<=t;++k)
for(int j=1;j<=4;++j)
for(int l=1;l<=4;++l) {
if(l < j) f[i][j][k][0] += f[i-1][l][k][0] + f[i-1][l][k][1]; //增加了一个低谷,不改变k
if(l > j) f[i][j][k][1] += f[i-1][l][k][1] + (k>0 ? f[i-1][l][k-1][0] : 0);
// printf("i = %d %d\n",i,f[i][j][k][1]);
}
int ans = 0;
for(int i=1;i<=4;++i)
ans += f[n][i][t][1];
printf("%d",ans);
return 0;
}

[CF] E. Camels的更多相关文章

  1. 跟着xiaoxin巨巨做cf

    cf 385 C. Bear and Prime Numbers 题目大意:有一个数列{xi},每次给出一个询问[l, r],即问 S(l ,r)是l和r之间的素数,f(p)表示数列{xi}中整除p的 ...

  2. CF dp 题(1500-2000难度)

    前言 从后往前刷 update 新增 \(\text{\color{red}{Mark}}\) 标记功能,有一定难度的题标记为 \(\text{\color{red}{红}}\) 色. 题单 (刷过的 ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

随机推荐

  1. [CSP-S模拟测试]:模板(ac)(线段树启发式合并)

    题目描述 辣鸡$ljh\ NOI$之后就退役了,然后就滚去学文化课了.他每天都被$katarina$大神虐,仗着自己学过一些姿势就给$katarina$大神出了一道题.有一棵$n$个节点的以$1$号节 ...

  2. synchronized 同步

    1.synchronized关键字的作用域有二种: 1)是某个对象实例内,synchronized aMethod(){}可以防止多个线程同时访问这个对象的synchronized方法(如果一个对象有 ...

  3. 手把手教你搞定个推iOS推送SDK集成

    以下是一位开发者在集成个推iOS推送SDK过程中的真实经历. 作者:Ezreallp 一次偶然的机会,公司的项目要用到推送,我自己本来就很懒,不愿意去弄整套APNS的流程,刚好之前跟朋友聊起过他们的产 ...

  4. LuceneNET全文检索封装

    一.源码特点       1.  Lucene.net是Lucene的.net移植版本,是一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎 ...

  5. 转:KVM使用NAT联网并为VM配置iptables端口转发,kvmiptables

    转载地址:https://www.ilanni.com/?p=7016 在前面的文章中,我们介绍KVM的虚拟机(以下简称VM)都是通过桥接方式进行联网的. 本篇文章我们来介绍KVM的VM通过NAT方式 ...

  6. cenos 7 中firewalld开放服务端口

    转载 CentOS 7 为firewalld添加开放端口及相关资料   1.运行.停止.禁用firewalld 启动:# systemctl start  firewalld 查看状态:# syste ...

  7. python进行数据库迁移的时候显示(TypeError: __init__() missing 1 required positional argument: 'on_delete')

    进行数据库迁移的时候,显示  TypeError: __init__() missing 1 required positional argument: 'on_delete' 图示: 出现原因: 在 ...

  8. Arrays.toList工具类

  9. csr_matrix用法

    1 csr_matrix默认对未填充的位置置为0, row = [0, 0, 0, 1, 1, 1, 2, 2, 2] # 行指标 col = [0, 1, 2, 0, 1, 2, 0, 1, 2] ...

  10. IntelliJ IDEA的常用设置

    1.设置IDEA主题样式 ①设置方法: ②效果:设置为Darcula之后整体的风格就是暗黑主题,如上图. 2.设置编辑区主题 ①设置方法: 注:由于IDEA自带的编辑区主题比较少,想要更多的编辑区主题 ...