摘要:TensorFlow 模型训练完成后,通常会通过frozen过程保存一个最终的pb模型。

本文分享自华为云社区《TensorFlow pb模型修改和优化》,作者:luchangli。

TensorFlow 模型训练完成后,通常会通过frozen过程保存一个最终的pb模型。保存的pb模型是以GraphDef数据结构保存的,可以序列化保存为二进制pb模型或者文本pbtxt模型。GraphDef本质上是一个DAG有向无环图,里面主要是存放了一个算子node list,每个算子具有名称,attr等内容,以及通过input包含了node之间的连接关系。

整个GraphDef的输入节点是以Placeholder节点来标识的,模型参数权重通常是以Const节点来保存的。不同于onnx,GraphDef没有对输出进行标识,好处是可以通过node_name:idx来引用获取任意一个节点的输出,缺点是一般需要通过netron手动打开查看模型输出,或者通过代码分析没有输出节点的node作为模型输出节点。下面简单介绍下pb模型常用的一些处理方法。

pb模型保存

# write pb model
with tf.io.gfile.GFile(model_path, "wb") as f:
f.write(graph_def.SerializeToString())
# write pbtxt model
tf.io.write_graph(graph_def, os.path.dirname(model_path), os.path.basename(model_path))

创建node

from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import node_def_pb2
from tensorflow.python.framework import tensor_util
pld_node = node_def_pb2.NodeDef()
pld_node.name = name
pld_node.op = "Placeholder"
shape = tf.TensorShape([None, 3, 256, 256])
pld_node.attr["shape"].CopyFrom(attr_value_pb2.AttrValue(shape=shape.as_proto()))
dtype = tf.dtypes.as_dtype("float32")
pld_node.attr["dtype"].CopyFrom(attr_value_pb2.AttrValue(type=dtype.as_datatype_enum))
# other commonly used setting
node.input.extend(in_node_names)
node.attr["value"].CopyFrom(
attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(
np_array, np_array.type, np_array.shape)))

构建模型和保存

import tensorflow as tf
import numpy as np
tf.compat.v1.disable_eager_execution()
tf.compat.v1.reset_default_graph()
m = 200
k = 256
n = 128
a_shape = [m, k]
b_shape = [k, n]
np.random.seed(0)
input_np = np.random.uniform(low=0.0, high=1.0, size=a_shape).astype("float32")
kernel_np = np.random.uniform(low=0.0, high=1.0, size=b_shape).astype("float32")
# 构建模型
pld1 = tf.compat.v1.placeholder(dtype="float32", shape=a_shape, name="input1")
kernel = tf.constant(kernel_np, dtype="float32")
feed_dict = {pld1: input_np}
result_tf = tf.raw_ops.MatMul(a=pld1, b=kernel, transpose_a=False, transpose_b=False)
with tf.compat.v1.Session() as sess:
results = sess.run(result_tf, feed_dict=feed_dict)
print("results:", results)
# 保存模型
dump_model_name = "matmul_graph.pb"
graph = tf.compat.v1.get_default_graph()
graph_def = graph.as_graph_def()
with tf.io.gfile.GFile(dump_model_name, "wb") as f:
f.write(graph_def.SerializeToString())

当然一般用其他方式而不是raw_ops构建模型。

pb模型读取

from google.protobuf import text_format
graph_def = tf.compat.v1.GraphDef()
# read pb model
with tf.io.gfile.GFile(model_path, "rb") as f:
graph_def.ParseFromString(f.read())
# read pbtxt model
with open(model_path, "r") as pf:
text_format.Parse(pf.read(), graph_def)

node信息打印

常用信息:

node.name
node.op
node.input
node.device
# please ref https://www.tensorflow.org/api_docs/python/tf/compat/v1/AttrValue
node.attr[attr_name].f # b, i, tensor, etc.
# graph_def中node遍历:
for node in graph_def.node:
##

对于node的input,一般用node_name:idx如node_name:0来表示输入来自上一个算子的第idx个输出。:0省略则是默认为第0个输出。 名称前面加^符号是控制边。这个input是一个string list,这里面的顺序也对应这个node的各个输入的顺序。

创建GraphDef和添加node

graph_def_n = tf.compat.v1.GraphDef()
for node in graph_def_o.node:
node_n = node_def_pb2.NodeDef()
node_n.CopyFrom(node)
graph_def_n.node.extend([node_n])
# you probably need copy other value like version, etc. from old graph
graph_def_n.version = graph_def_o.version
graph_def_n.library.CopyFrom(graph_def_o.library)
graph_def_n.versions.CopyFrom(graph_def_o.versions)

return graph_def_n

没有onnx模型往graph里面添加节点的topo排序要求

设置placeholder的shape

参考前面创建node部分,通过修改Placeholder的shape属性。

模型shape推导

需要导入模型到tf:tf.import_graph_def(graph_def, name='')。当然需要先设置正确的pld的shape。

然后获取node的输出tensor:graph.get_tensor_by_name(node_name + ":0")。

最后可以从tensor里面获取shape和dtype。

pb模型图优化

思路一般比较简单:

1,子图连接关系匹配,比如要匹配conv2d+bn+relu这个pattern连接关系。由于每个node只保存其输入的node连接关系,要进行DFS/BFS遍历图一般需要每个node的输入输出,这可以首先读取所有的node连接关系并根据input信息同时创建一个output信息map。

2,子图替换,先创建新的算子,再把旧的算子替换为新的算子。这个需要创建新的node或者直接修改原来的node。旧的不要的算子可以创建个新图拷贝时丢弃,新的node可以直接extend到graph_def。

3,如果替换为TF内置的算子,算子定义可以参考tensorflow raw_ops中的定义,但是有些属性(例如数据类型attr "T")没有列出来:https://www.tensorflow.org/api_docs/python/tf/raw_ops

当然也可以替换为自定义算子,这就需要用户开发和注册自定义算子:https://www.tensorflow.org/guide/create_op

如上所述,TensorFlow的pb模型修改优化可以直接使用python代码实现,极大简化开发过程。当然TensorFlow也可以注册grappler和post rewrite图优化pass在C++层面进行图优化,后者除了可以用于推理,也可以用于训练优化。

saved model与pb模型的相互转换

可以参考:tensorflow 模型导出总结 - 知乎

saved model保存的是一整个训练图,并且参数没有冻结。而只用于模型推理serving并不需要完整的训练图,并且参数不冻结无法进行转TensorRT等极致优化。当然也可以saved_model->frozen pb->saved model来同时利用两者的优点。

pb转onnx

使用tf2onnx库GitHub - onnx/tensorflow-onnx: Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

#!/bin/bash
graphdef=input_model.pb
inputs=Placeholder_1:0,Placeholder_2:0
outputs=output0:0,output1:0
output=${graphdef}.onnx
python -m tf2onnx.convert \
--graphdef ${graphdef} \
--output ${output} \
--inputs ${inputs} \
--outputs ${outputs}\
--opset 12

点击关注,第一时间了解华为云新鲜技术~

带你了解TensorFlow pb模型常用处理方法的更多相关文章

  1. 查看tensorflow pb模型文件的节点信息

    查看tensorflow pb模型文件的节点信息: import tensorflow as tf with tf.Session() as sess: with open('./quantized_ ...

  2. MxNet 模型转Tensorflow pb模型

    用mmdnn实现模型转换 参考链接:https://www.twblogs.net/a/5ca4cadbbd9eee5b1a0713af 安装mmdnn pip install mmdnn 准备好mx ...

  3. 查看tensorflow Pb模型所有层的名字

    代码如下: import tensorflow as tf def get_all_layernames(): """get all layers name"& ...

  4. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  5. tensorflow学习笔记——模型持久化的原理,将CKPT转为pb文件,使用pb模型预测

    由题目就可以看出,本节内容分为三部分,第一部分就是如何将训练好的模型持久化,并学习模型持久化的原理,第二部分就是如何将CKPT转化为pb文件,第三部分就是如何使用pb模型进行预测. 一,模型持久化 为 ...

  6. [Tensorflow]模型持久化的原理,将CKPT转为pb文件,使用pb模型预测

    文章目录 [Tensorflow]模型持久化的原理,将CKPT转为pb文件,使用pb模型预测 一.模型持久化 1.持久化代码实现 convert_variables_to_constants固化模型结 ...

  7. tensorflow c++ API加载.pb模型文件并预测图片

    tensorflow  python创建模型,训练模型,得到.pb模型文件后,用c++ api进行预测 #include <iostream> #include <map> # ...

  8. 将keras的h5模型转换为tensorflow的pb模型

    h5_to_pb.py from keras.models import load_model import tensorflow as tf import os import os.path as ...

  9. tensorflow机器学习模型的跨平台上线

    在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法 ...

  10. (四) tensorflow笔记:常用函数说明

    tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...

随机推荐

  1. 关于AI时代的程序架构的变化

    以ChatGPT为代表的AI出现,表示着AI的零点时刻已经突破.现在AI的使用已经不用再多说了,实际上是已经侵入到各行各业.所有人都在疯狂寻找本行业AI的使用场景,这样的盛景只在互联网刚出现的时候能感 ...

  2. AsyncOperation更好的实现大场景载入

    说明:为了实现场景A->大场景B,可以让场景A->等待场景C->大场景B 知识点:AsyncOperation;AsyncOperation.allowSceneActivation ...

  3. 基于Echart的前端可视化

    GitHub 上有许多关于低代码自助可视化的项目,前端使用 Vue 和 ECharts 的示例.以下是一些可能符合你要求的项目: DataV: 项目链接:DataV 描述:DataV 是一款基于 Vu ...

  4. 当代免疫学小史-第一章(根据讲谈社Blue Backs系列2009年第一版第三次印刷版本翻译)

    作者 -岸本忠三:前大阪大学校长.IL-6发现人 -中嶋彰:科普作家 第1章 石坂往事 巴尔的摩的大雪 1970年匆匆而过,这一年举行了大阪世博会,三岛由纪夫也是在这一年切腹自杀的.1971年新年第一 ...

  5. 潜在威胁信息模型(PTIM)-Potential threats Information Modeling

    前言 这只是一位学识浅薄博主的一个突然想法,还望各位专业领域的专家教授轻怼 潜在威胁信息模型 目前的想法是通过全城摄像头建立城市的潜在威胁信息模型,这个潜在威胁可以包括:天气灾害(冰雹.雾霾能见度等) ...

  6. Llinux登录后出现-bash-4.2#,解决办法以及造成这样的原因

    版权声明:原创作品,谢绝转载!否则将追究法律责任. ----- 作者:kirin 1.原因是root在/root下面的几个配置文件丢失,丢失文件如下: 1..bash_profile 2..bashr ...

  7. CortexM外设:NVIC 嵌套向量中断控制器

    优先级分组Priority Group 使能Enabled 抢占优先级Preemption Priority 子优先级Sub Priority 外部中断线 EXTI Line 定时器中断 TIM1 u ...

  8. 【WCH以太网接口系列芯片】基于CH395的组播请求(IGMP)

    在上一篇文章中,我们通过直连电脑测试了CH395在组播环境中进行数据的收发,但在实际的使用场景中更多的是将CH395接入局域网环境中.因此,我们需要使用到一个协议--IGMP(Internet Gro ...

  9. 使用Netty实现文件传输的HTTP服务器和客户端

    现在我们来用netty实现文件传输的HTTP服务器和客户端 pom依赖文件: <?xml version="1.0" encoding="UTF-8"?& ...

  10. SpringBoot事件机制

    1.是什么? SpringBoot事件机制是指SpringBoot中的开发人员可以通过编写自定义事件来对应用程序进行事件处理.我们可以创建自己的事件类,并在应用程序中注册这些事件,当事件被触发时,可以 ...