Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning

2023 ICCV

*Siming Yan, Zhenpei Yang, Haoxiang Li, Chen Song, Li Guan, Hao Kang, Gang Hua, Qixing Huang*; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 14530-14542

Abstract

总结 :本文专注于autoencoder框架下的点云表示模型的性能优化,提出了sample-variant issue ,即不同采样(采样是因为网络处理体量限制,需要先对数据集中的数据进行降采样)引入的噪声不同,普通的autoencoder点云表示学习方法,例如Point-MAE拟合输入和重建点云保持完全一致,导致采样中的噪声一定程度上也影响到的了encoder输出的latent code,降低了对同一目标的不同点云的语义表示一致性,换句话说: limiting the model's ability to extract valuable information about the true 3D geometry。作者基于这一点提出了对于decoder的优化,decoder原来是重建点云数据,作者换为重建输入点云的隐式表示 (SDF、UDF、occupancy grid),并且原来的Loss函数(Chamfer Distance Loss,Earth Mover`s Distance)替换为:将重建的隐式表示,和输入点云计算得到的隐式表示之间的L1 distance(for SDF,UDF),或者cross entropy(for occupancy grid)。Loss替换还有一个好处在于大大降低了计算复杂度,使得输入点云的点数能够大大增多,论文中表明点数能从1k左右 -> 40k,在tesla V100的GPU加持下。

Sample Variation Issue

从图中不同的采样在不同位置的点云密度不同,密度大的自然网络容易学习,密度小的网络学习较为困难,但确实原来直接重建点云的方法,使得latent code不得不带有不同sample distinctive的特征描述,本文就意在解决这一问题,促使网络学习到更加generalize的特征)(for one 3D object)。

实验中显示了IAE思想的有效性,在分类任务中观察同类样本和非同类样本的特征描述相互之间的距离,可以看到IAE同类样本的聚类半径远小于显示重建点云:

Pipeline

这里主要说的pretrain阶段的decoder的输出,本文主要改进的也是他,这里的 \((g \circ f)(x | \mathcal{P})\) 表示这个autoencoder-decoder架构在 \(\mathcal{P}\) 采样输入样本下的重建出来的隐式表示, \(\lambda_{gt}\) 表示使用ground truth(数据集中的数据)计算出来的隐式表示,例如SDF、UDF、occupancy grid三种:

Experiment

看论文就行了,全SOTA,确实有效,并且替换其他encoder,与其他基于其encoder的方法作比较也是SOTA。

在隐式表示是occupancy grid用的decoder:

Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning论文阅读的更多相关文章

  1. Chinese word segment based on character representation learning 论文笔记

    论文名和编号 摘要/引言 相关背景和工作 论文方法/模型 实验(数据集)及 分析(一些具体数据) 未来工作/不足 是否有源码 问题 原因 解决思路 优势 基于表示学习的中文分词 编号:1001-908 ...

  2. 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》

    Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...

  3. 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》

    论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...

  4. 论文解读(MERIT)《Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning》

    论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning ...

  5. 论文解读(SUBG-CON)《Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning》

    论文信息 论文标题:Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning论文作者:Yizhu Ji ...

  6. 论文解读(USIB)《Towards Explanation for Unsupervised Graph-Level Representation Learning》

    论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng ...

  7. 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》

    论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...

  8. 翻译 Improved Word Representation Learning with Sememes

    翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...

  9. Self-Supervised Representation Learning

    Self-Supervised Representation Learning 2019-11-11 21:12:14  This blog is copied from: https://lilia ...

  10. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

随机推荐

  1. Ubuntu 安装 gitweb + Apache2

    背景 之前已经使用了gerrit进行代码管理,但是在有些代码由于内部技术管理不当而丢失了Review记录. 因此找到了通过gitweb弥补的问题. 做法 安装 sudo apt-get install ...

  2. ARM GIC 系列文章学习(转)

    原文来自:骏的世界 ARM GIC(一) cortex-A 处理器中断简介 对于ARM的处理器,中断给处理器提供了触觉,使处理器能够感知到外界的变化,从而实时的处理.本系列博文,是以ARM corte ...

  3. Vs生成后 自动压缩 删除多余xml

    setlocal enabledelayedexpansionset ProjectName=$(ProjectName)del /s /q /f "$(ProjectDir)bin\Deb ...

  4. 『vulnhub系列』Dripping-Blues-1

    『vulnhub系列』Dripping-Blues-1 下载地址: https://www.vulnhub.com/entry/dripping-blues-1,744/ 信息搜集: 使用nmap进行 ...

  5. 将本地Unity项目上传到GitHub

    标题:如何将本地Unity项目上传到GitHub教程 问题背景: 说来惭愧,玩程序这么多年,一直在领导们手下开发,自己有什么需要记录的都在本地或者博客园随手记记,有什么需要测试或者自己研究的东西,也都 ...

  6. Mybatis xxxMapper.xml 三表关联,配置文件

    VideoMapper.xml <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mappe ...

  7. AT_arc113_c 题解

    洛谷链接&Atcoder 链接 本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读. 题目简述 现在有一个字符串 \(S\),每一次你可以选择一个 \(i(1 \le i \le | ...

  8. C# 对象复制三种方法效率对比——反射、序列化、表达式树

    1.需求 在代码中经常会遇到需要把对象复制一遍,或者把属性名相同的值复制一遍. 比如: public class Student { public int Id { get; set; } publi ...

  9. C# 常用类和命名空间

    Array类 用括号声明数组是C#中使用Array类的记号.在后台使用C#语法,会创建一个派生于抽象基类Array的新类.这样,就可以使用Array类为每个C#数组定义的方法和属性了. Array类实 ...

  10. Python在linux系统和window系统相对路径导致找不到文件报错

    文件路径 project1 -dir1 --test1.py -dir2 --test2.text -main.py test1.py from pathlib import Path "& ...