NOIP模拟98(多校30)
T1 构造字符串
解题思路
不算特别难的题,但是有一点细节。。。
首先需要并茶几缩一下点,然后判断一下是否合法,由于我们需要字典序最小的,因此我们应当保证一个联通块中标号较小的点为根节点。
那么对于所有不能够相等的标号对,我们再标号较大的点记下来标号较小的点的限制,然后从前往后扫一遍取 \(mex\) 值就好了。
code
#include<bits/stdc++.h>
#define int long long
#define ull unsigned long long
#define f() cout<<"RP++"<<endl
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=1e3+10;
int n,m,fa[N],ans[N];
struct Node{int x,y,z;}s[N];
vector<int> v[N];
bitset<N> bit;
int find(int x)
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
#undef int
int main()
{
#define int long long
freopen("str.in","r",stdin); freopen("str.out","w",stdout);
n=read(); m=read();
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1,x,y,z;i<=m;i++)
{
x=read(); y=read(); z=read();
s[i]=(Node){x,y,z};
for(int j=1;j<=z;j++)
if(find(x+j-1)!=find(y+j-1))
if(find(y+j-1)>find(x+j-1)) fa[find(y+j-1)]=find(x+j-1);
else fa[find(x+j-1)]=find(y+j-1);
}
for(int i=1;i<=m;i++)
{
int p1=s[i].x+s[i].z,p2=s[i].y+s[i].z;
if(p1>n||p2>n) continue;
if(find(p1)==find(p2)) printf("-1"),exit(0);
if(find(p1)>find(p2)) swap(p1,p2);
v[find(p2)].push_back(find(p1));
}
for(int i=1,col;i<=n;i++)
{
if(find(i)!=i) continue; bit.reset();
for(auto it:v[i]) bit[ans[it]]=true;
col=0; while(bit[col]) col++; ans[i]=col;
}
for(int i=1;i<=n;i++) printf("%lld ",ans[find(i)]);
return 0;
}
T2 寻宝
解题思路
签到题。
首先把所有的可以互相到达的点用并茶几缩一下。
对于传送门的情况可以 Floyd 跑一遍也可以 bitset
整一遍,还可以对于一个询问直接搜一下。。
code
#include<bits/stdc++.h>
#define int long long
#define ull unsigned long long
#define f() cout<<"RP++"<<endl
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=5e4+10;
int n,m,t,q,col,vis[N],fa[N];
int tot=1,head[N],ver[N<<1],nxt[N<<1];
int d1[10]={0,1,-1,0,0};
int d2[10]={0,0,0,1,-1};
vector<int> v[N];
char ch[N];
int id(int x,int y){return (x-1)*m+y;}
int find(int x)
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void add_edge(int x,int y)
{
ver[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x)
{
vis[x]=col;
for(int i=head[x];i;i=nxt[i])
if(vis[ver[i]]^col)
dfs(ver[i]);
}
#undef int
int main()
{
#define int long long
freopen("treasure.in","r",stdin); freopen("treasure.out","w",stdout);
n=read(); m=read(); t=read(); q=read();
for(int i=0;i<=m+1;i++) v[0].push_back('#'),v[n+1].push_back('#');
for(int i=1;i<=n;i++)
{
scanf("%s",ch+1); v[i].push_back('#');
for(int j=1;j<=m;j++) v[i].push_back(ch[j]);
v[i].push_back('#');
}
for(int i=1;i<=n*m;i++) fa[i]=i;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(v[i][j]!='#')
for(int k=1;k<=4;k++)
{
int x=i+d1[k],y=j+d2[k];
if(v[x][y]=='#') continue;
int p1=id(i,j),p2=id(x,y);
if(find(p1)!=find(p2)) fa[find(p1)]=find(p2);
}
for(int i=1,x,y,x2,y2;i<=t;i++)
{
x=read(); y=read(); x2=read(); y2=read();
if(find(id(x,y))==find(id(x2,y2))) continue;
add_edge(find(id(x,y)),find(id(x2,y2)));
}
while(q--)
{
int x,y,x2,y2,p1,p2;
x=read(); y=read(); x2=read(); y2=read();
p1=find(id(x,y)); p2=find(id(x2,y2)); col++; dfs(p1);
if(vis[p2]==col) printf("1\n"); else printf("0\n");
}
return 0;
}
T3 序列
解题思路
确实是一个李超线段树的好题。。。
发现一个位置 p 的最后答案其实就是对于以 p 为右端点向左边拓展,以 p+1 为左端点可以向右边拓展的最优解。
这两种情况类似只讨论第一种情况,记前缀和数组是 \(prea,preb\) 。
那么最优解就是 \(\max\limits_{1\le l\le r}\{(prea_r-prea_{l-1})-k(preb_r-preb_{l-1})\}\) 。
对于一个右端点 p 而言答案就是 \(prea_p-k\times preb_p+\max\limits_{0\le i<p}\{preb_i\times k-prea_i\}\) 。
直接以 k 为下标,李超线段树维护就好了。
code
#include<bits/stdc++.h>
#define int long long
#define ull unsigned long long
#define f() cout<<"RP++"<<endl
#define ls x<<1
#define rs x<<1|1
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=1e6+10,INF=1e18;
int n,m,cnt,lim1,lim2=INF,a[N],b[N],lsh[N],prea[N],preb[N],sufa[N],sufb[N],ans[N];
struct node{int p,k;}q[N];
vector< pair<int,int> > pre[N],suf[N];
inline int g(int pos,int k,int b){return lsh[pos]*k+b;}
struct Segment_Tree
{
struct Node{int k,b;}tre[N<<2];
void build(int x,int l,int r)
{
tre[x].b=-INF; tre[x].k=0; if(l==r) return ;
int mid=(l+r)>>1; build(ls,l,mid); build(rs,mid+1,r);
}
void insert(int x,int l,int r,int k,int b)
{
if(g(l,k,b)>=g(l,tre[x].k,tre[x].b)&&g(r,k,b)>=g(r,tre[x].k,tre[x].b)) return tre[x]=(Node){k,b},void();
if(l==r) return ; int mid=(l+r)>>1;
if(g(mid,k,b)>g(mid,tre[x].k,tre[x].b)) swap(tre[x].k,k),swap(tre[x].b,b);
if(g(l,k,b)>g(l,tre[x].k,tre[x].b)) insert(ls,l,mid,k,b);
if(g(r,k,b)>g(r,tre[x].k,tre[x].b)) insert(rs,mid+1,r,k,b);
}
int query(int x,int l,int r,int pos)
{
if(l==r) return g(pos,tre[x].k,tre[x].b);
int mid=(l+r)>>1,temp=g(pos,tre[x].k,tre[x].b);
if(pos<=mid) return max(temp,query(ls,l,mid,pos));
return max(temp,query(rs,mid+1,r,pos));
}
}T1,T2;
#undef int
int main()
{
#define int long long
freopen("seq.in","r",stdin); freopen("seq.out","w",stdout);
n=read(); m=read();
for(int i=1;i<=n;i++) a[i]=read(),b[i]=read(),prea[i]=prea[i-1]+a[i],preb[i]=preb[i-1]+b[i];
for(int i=n;i>=1;i--) sufa[i]=sufa[i+1]+a[i],sufb[i]=sufb[i+1]+b[i];
for(int i=1;i<=m;i++) q[i].p=read(),q[i].k=read(),lsh[i]=q[i].k,lim1=max(lim1,q[i].p),lim2=min(lim2,q[i].p+1);
sort(lsh+1,lsh+m+1); cnt=unique(lsh+1,lsh+m+1)-lsh-1; T1.build(1,1,cnt); T2.build(1,1,cnt);
for(int i=1;i<=m;i++)
{
pre[q[i].p].push_back({i,q[i].k});
if(q[i].p!=n) suf[q[i].p+1].push_back({i,q[i].k});
}
for(int i=0;i<=lim1;i++)
{
for(auto it:pre[i])
{
int temp=lower_bound(lsh+1,lsh+cnt+1,it.second)-lsh;
ans[it.first]+=prea[i]-it.second*preb[i]+T1.query(1,1,cnt,temp);
}
T1.insert(1,1,cnt,preb[i],-prea[i]);
}
for(int i=n+1;i>=lim2;i--)
{
T2.insert(1,1,cnt,sufb[i],-sufa[i]);
for(auto it:suf[i])
{
int temp=lower_bound(lsh+1,lsh+cnt+1,it.second)-lsh;
ans[it.first]+=sufa[i]-it.second*sufb[i]+T2.query(1,1,cnt,temp);
}
}
for(int i=1;i<=m;i++) printf("%lld\n",ans[i]);
return 0;
}
T4 构树
解题思路
只学会了一个状压的做法。。。
首先有一个定理:
Cayley定理:一个完全图有\(n^{n-2}\)棵无根生成树,经典问题prufer序列证明
扩展Cayley定理:被确定边分为大小为\(a_1,a_2,\cdots, a_m\)的连通块,则有\(n^{m-2}\prod {a_i}\)种生成树
然后我们枚举那些边是连接的然后根据上面的定理求出来一个至少有若干条边相同的值,然后二项式反演就好了。
code
#include<bits/stdc++.h>
#define int long long
#define ull unsigned long long
#define f() cout<<"RP++"<<endl
#define count __builtin_popcount
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=8e3+10,mod=1e9+7;
int n,fac[N],ifac[N],g[N],f[N],fa[N],siz[N];
pair<int,int> s[N];
int power(int x,int y,int p=mod)
{
int temp=1; y=(y+mod-1)%(mod-1);
for(;y;y>>=1,x=x*x%p)
if(y&1) temp=temp*x%p;
return temp;
}
int find(int x)
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void add(int &x,int y){x+=y;if(x>=mod)x-=mod;}
int C(int x,int y){if(x<y)return 0;return fac[x]*ifac[y]%mod*ifac[x-y]%mod;}
#undef int
int main()
{
#define int long long
freopen("tree.in","r",stdin); freopen("tree.out","w",stdout);
n=read(); fac[0]=ifac[0]=1;
for(int i=1,x,y;i<n;i++) s[i].first=read(),s[i].second=read();
for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod; ifac[n]=power(fac[n],mod-2);
for(int i=n-1;i>=1;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
for(int sta=0;sta<(1ll<<n-1);sta++)
{
int temp=1;
for(int i=1;i<=n;i++) fa[i]=i,siz[i]=1;
for(int i=1;i<n;i++)
if(((sta>>i-1)&1)&&find(s[i].first)!=find(s[i].second))
{
siz[find(s[i].second)]+=siz[find(s[i].first)];
fa[find(s[i].first)]=find(s[i].second);
}
for(int i=1;i<=n;i++) if(find(i)==i) temp=temp*siz[i]%mod;
add(g[count(sta)],temp);
}
for(int i=0;i<n;i++) g[i]=g[i]*power(n,n-i-2)%mod;
for(int i=0;i<n;i++)
{
for(int j=i,bas=1;j<n;j++,bas=-bas)
add(f[i],(bas+mod)%mod*C(j,i)%mod*g[j]%mod);
}
for(int i=0;i<n;i++) printf("%lld ",f[i]);
return 0;
}
NOIP模拟98(多校30)的更多相关文章
- NOIP模拟83(多校16)
前言 CSP之后第一次模拟赛,感觉考的一般. 不得不吐槽多校联测 OJ 上的评测机是真的慢... T1 树上的数 解题思路 感觉自己思维有些固化了,一看题目就感觉是线段树. 考完之后才想起来这玩意直接 ...
- NOIP模拟86(多校19)
T1 特殊字符串 解题思路 \(f_{i,j}\) 表示前 \(i\) 个字符中结尾为 \(j\) 的最大贡献. 转移枚举当前位置于之前位置结尾的组合加上贡献即可. 对于边界问题,容易发现选择 1 一 ...
- NOIP模拟92(多校25)
前言 所以说这次是 HZOI 多校联测巅峰????(题目,数据过水??) T1 石子合并 解题思路 签到题. 发现我们可以给每个数字附一个正负号,每个数字的贡献就是它本身乘上这个符号. 发现至少应该有 ...
- NOIP模拟84(多校17)
T1 宝藏 解题思路 考场上一眼出 \(nlog^2\) 做法,然后没看见是 1s 3e5 的数据,我竟然以为自己切了?? 考完之后尝试着把二分改为指针的移动,然后就过了??或许是数据水吧,感觉自己的 ...
- NOIP模拟85(多校18)
前言 好像每个题目背景所描述的人都是某部番里的角色,热切好像都挺惨的(情感上的惨). 然后我只知道 T1 的莓,确实挺惨... T1 莓良心 解题思路 首先答案只与 \(w\) 的和有关系,于是问题就 ...
- NOIP模拟88(多校21)
前言 对于这套题的总体感觉就是难,然后就是自己很菜... 对于 T1 考试时只会一个最垃圾的背包,考完之后对于思路这一块也不是很顺利,大概这就是薄弱的地方吧. 然后 T2 是比较简单的一道题了,但是考 ...
- NOIP模拟96(多校29)
T1 子集和 解题思路 大概是一个退背包的大白板,然而我考场上想复杂了,竟然还用到了组合数. 但是大概意思是一样的,有数的最小值一定是一个在 \(a\) 数组中存在的数字. 那么我们想办法除去它对应的 ...
- NOIP模拟99(多校31)
T1 法阵 解题思路 原题3100,张口放 T1(出题人原话) 思维题,合法的情况其实就是上下两个梯形拼起来的样子. 他们的边界都是在 \(i\) 轴上面,但是不能相交. 于是我们可以尝试两者相交的纵 ...
- noip模拟30[毛毛毛探探探]
\(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \( ...
- NOIP模拟 17.8.16
NOIP模拟17.8.16 A 债务文件名 输入文件 输出文件 时间限制 空间限制debt.pas/c/cpp debt.in debt.out 1s 128MB[题目描述]小 G 有一群好朋友,他们 ...
随机推荐
- 纯CSS实现带小三角提示框
要实现在页面上点击指定元素时,弹出一个信息提示框.在前面的文章中,我们已经简单介绍了如何使用纯 CSS 创建一个三角形.本文在此基础上,记录如何使用 CSS 创建带三角形的提示框. 实现的原理是创建一 ...
- WPF/C#:让绘制的图形可以被选中并将信息显示在ListBox中
实现的效果 如果你对此感兴趣,可以接着往下阅读. 实现过程 绘制矩形 比如说我想绘制一个3行4列的表格: private void Button_Click_DrawRect(object sende ...
- 对于小程序canvas在某些情况下touchmove 不能触发导致的签名不连续替代方案(企微)
1.问题 微信开放社区链接 尝试过新版canvas,在企业微信中签名依然是依然断触,有问题的手机是iphoe15,系统版本以及企微版本微信版本均与签名正常的手机一致,但是那个手机就是无法正常签字,在微 ...
- NBF事件中心架构设计与实现
简介:NBF是阿里巴巴供应链中台的基础技术团队打造的一个技术PaaS平台,她提供了微服务FaaS框架,低代码平台和中台基础设施等一系列的PaaS产品,旨在帮助业务伙伴快速复用和扩展中台能力,提升研发 ...
- 如何使用Arthas提高日常开发效率?
简介: 1. Arthas有什么功能,怎么用,请看:Arthas使用手册 2. Arthas命令比较复杂,一个帮助生成命令的IDEA插件:arthas idea plugin 使用文档 3. 基于Ar ...
- 【ESSD技术解读-04】ESSD Auto PL规格,引领IO性能弹性新方向
简介: 阿里云 ESSD 为云服务器 ECS 提供低时延.持久性和高可靠的块存储服务,成为云厂商全闪块存储的业界标杆.存储团队推出了 ESSD Auto PL 新的云盘规格,把性能与容量解耦,提供 ...
- 延迟绑定与retdlresolve
延迟绑定与retdlresolve 我们以前在ret2libc的时候,我们泄露的libc地址是通过延迟绑定实现的,我们知道,在调用libc里面的函数时候,它会先通过plt表和gor表绑定到,函数真实地 ...
- dotnet 6 修复找不到 EnumeratorToEnumVariantMarshaler 问题
我将在一个 .NET Framework 项目升级到 dotnet 6 时发现构建不通过,因为原先的代码使用到了 EnumeratorToEnumVariantMarshaler 类型,在 dotne ...
- OLAP系列之分析型数据库clickhouse集群部署(二)
一.环境准备 IP 配置 clickhouse版本 zookeeper版本 myid 192.168.12.88 Centos 7.9 4核8G 22.8.20.11 3.7.1 3 192.168. ...
- 003_Orcad菜单讲解与偏好设置
003_Orcad菜单讲解与偏好设置 菜单栏用的比较多的是File和Options项. 网格建议用lines,比较方便对齐. Auto Reference和Intertool Commuication ...