滑动窗口最大值

力扣题目链接(opens new window)

给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

进阶:

你能在线性时间复杂度内解决此题吗?

提示:

  • 1 <= nums.length <= 10^5
  • -10^4 <= nums[i] <= 10^4
  • 1 <= k <= nums.length

思路

虽然本题在LeetCode上为困难级别,但是似乎很容易想到对应的暴力解法,首先我们得明白这题难在哪里

使用暴力解法

本题的难点在于使用一般的方法解,时间复杂度会很高

一种很自然的想法是:滑动窗口遍历过程中,我们又去遍历窗口内的数,比较大小后返回最大值

那么这种方法的时间复杂度为O(n*k),k为窗口大小,n为数组遍历次数

使用队列行不行?

观察滑动窗口移动的方式,和队列有点像

使用队列模拟滑动窗口,窗口每次向右移动一个单位,只需将队列的首位pop并将下一个数添加到队尾即可完成操作

那么可不可以用优先级队列来获取窗口内的最大值呢?

可以,但是会破坏窗口内元素的顺序,不利于后续操作

例如,当前窗口内的数为{1,3,-1}

如果将其放入优先级队列,那么顺序就会变为{3,1,-1}

很好,找到最大值3了。但是窗口向后移动时,按原来的设想,我们需要把1弹出,但是现在1被夹在中间,pop不了,出现问题。所以不能用优先级队列去做

自定义队列
逻辑

虽然不能用优先级队列去解决本题,但是这个思考过程是可以借鉴的

这里需要明确一点:队列中的元素顺序其实并不重要,队列只是用于模拟滑动窗口的一个数据结构

队列中数据的进出只需要满足滑动窗口移动的规则即可

因此,我们可以设想这样一种自定义队列:

该队列的队头永远是当前滑动窗口中的最大值,当滑动窗口移动时,我们就把新的数添加到队尾。

如果新数比队头的数还要大,那么将之前所有的队内元素弹出,使新数位于队头,如此循环

这种队列被称为单调队列

然后我们再通过一个函数去获取队列首部的最大值就可以实现题目的要求了,最终结果是{3,3,5,5,5,3}

总结一下,我们需要实现的队列结构大致如下:

class MyQueue {
public:
void pop(int value) {
}
void push(int value) {
}
int front() {
return que.front();
}
};

实现

那么想法有了,用什么数据结构去实现这个单调队列呢?--> deque

实现单调队列MyQueue

如上面说的,单调队列类MyQueue中提供pop、push、front三个方法

pop

用于弹出元素

每次弹出之前要先判断当前队列是否为空,以及输入值是否与队头数据相等

void pop(int value){
if(!que.empty() && value == que.front()){
que.pop_front();//弹出队首元素
}
}

如果要pop的元素是队首元素,说明当前最大值需要更新,并且该更新是因为窗口移动导致的,而不是来了个新的最大值

简单来说,不是每次滑动窗口移动都需要调用pop,pop函数只负责单纯的pop掉队列开头的元素

如果有新的数值进来并且是最大值,那么将新的最大值移动到队首的操作会由push函数实现

push

用于将新元素添加到队尾

void push(int value){
while(!que.empty() && value > que.back()){//如果新元素一直大于队尾的数,就不断将队尾数pop
que.pop_back();
}
//直到遇到比新元素更大的值或者只剩下新元素
que.push_back(value);
}
front

用于查询队列头部的元素

		// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
int front() {
return que.front();
}
完整代码
class MyQueue {
public:
deque<int> que;
void pop(int value) {
if(!que.empty() && value == que.front()){
que.pop_front();//弹出队首元素
}
}
void push(int value) {
while(!que.empty() && value > que.back()){//如果新元素一直大于队尾的数,就不断将队尾数pop
que.pop_back();
}
//直到遇到比新元素更大的值或者只剩下新元素
que.push_back(value);
}
int front() {
return que.front();
}
};

整体代码

步骤:

1、使用deque实现单调队列MyQueue

2、实例化单调队列

3、将整数数组中k(窗口大小)个元素遍历加入队列中

4、res记录当前k个数中的最大值

5、开始移动窗口遍历整数数组

  • 使用pop配合push模拟窗口的滑动
  • 记录当前最大值

6、返回结果数组res

class Solution {
private:
class MyQueue{
public: deque<int> que;
void pop(int value){
if(!que.empty() && value == que.front()){
que.pop_front();//弹出队首元素
}
} void push(int value){
while(!que.empty() && value > que.back()){//如果新元素一直大于队尾的数,就不断将队尾数pop
que.pop_back();
}
//直到遇到比新元素更大的值或者只剩下新元素
que.push_back(value);//注意用的是自己实现的push,不是push_back
} int front(){// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
return que.front();
}
}; public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MyQueue que;
//输出值是数组
vector<int> res;
//将滑动窗口初始位置的值加入
for(int i = 0; i < k; ++i){
que.push(nums[i]);
}//此时执行完后,que中为[3,-1]
//记录当前最大值
res.push_back(que.front());//初始窗口中也要取最大值,不然会漏情况 //模拟窗口移动
for(int i = k; i < nums.size(); ++i){//注意从k开始
que.pop(nums[i - k]);//将窗口最前面的数pop掉
que.push(nums[i]);//往窗口末尾加入新数,使窗口向右移动
res.push_back(que.front());//记录当前窗口的最大值
}
return res;
}
};
主函数部分说明

主函数逻辑:

1、实例化MyQueue、结果数组vector res;

2、初始化滑动窗口,即先使用自定义的push(不是push_back)把数组前k个数放入队列(同时就排好序了)

3、将当前初始化窗口的最大值保存(用vector提供的方法:push_back)

4、模拟窗口移动(注意遍历开始的位置,以及窗口头部和尾部位置)

补充知识

vector添加元素用push_back,deuqe也用这个

TBD

二刷问题

1、自定义的队列类MyQueue记得写作用域public

2、在主代码中维护的que队列不是所谓的"窗口",它只是用来保证我们设想的窗口中最左边的值永远是最大值(队首),可以类比辅助栈的作用

3、一开始我们需要往窗口中填入窗口大小的元素,加入元素的方式是自定义类中的push方法,加完之后也要保存当前队列首部的最大值,不要漏情况

4、遍历是从k开始的,不是0

【LeetCode栈与队列#05】滑动窗口最大值的更多相关文章

  1. [Leetcode]双项队列解决滑动窗口最大值难题

    这道题是从优先队列的难题里面找到的一个题目.可是解法并不是优先队列,而是双项队列deque 其实只要知道思路,这一道题直接写没有太大的问题.我们看看题 给定一个数组 nums,有一个大小为 k 的滑动 ...

  2. 【Leetcode堆和双端队列】滑动窗口最大值(239)

    题目 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 示例: 输入 ...

  3. [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  4. [leetcode]239. Sliding Window Maximum滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  5. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  6. [思维提升|干货All in]6种算法解决LeetCode困难题:滑动窗口最大值

    为了更好的阅读体验,欢迎阅读原文: [思维提升|干货All in]6种算法解决LeetCode困难题:滑动窗口最大值 (eriktse.com) 最近在leetcode遇到一道非常经典的题目:239. ...

  7. Leetcode 239.滑动窗口最大值

    滑动窗口最大值 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口 k 内的数字.滑动窗口每次只向右移动一位. 返回滑动窗口最大值. 示例: ...

  8. Java实现 LeetCode 239 滑动窗口最大值

    239. 滑动窗口最大值 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最 ...

  9. 代码随想录第十三天 | 150. 逆波兰表达式求值、239. 滑动窗口最大值、347.前 K 个高频元素

    第一题150. 逆波兰表达式求值 根据 逆波兰表示法,求表达式的值. 有效的算符包括 +.-.*./ .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 注意 两个整数之间的除法只保留整数部分. ...

  10. [Swift]LeetCode239. 滑动窗口最大值 | Sliding Window Maximum

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

随机推荐

  1. [转帖]kubelet 原理解析四:probeManager

    https://segmentfault.com/a/1190000022163835 概述 在Kubernetes 中,系统和应用程序的健康检查任务是由 kubelet 来完成的,本文主要讨论kub ...

  2. Spring 应用合并之路(二):峰回路转,柳暗花明 | 京东云技术团队

    书接上文,前面在 Spring 应用合并之路(一):摸石头过河 介绍了几种不成功的经验,下面继续折腾- 四.仓库合并,独立容器 在经历了上面的尝试,在同事为啥不搞两个独立的容器提醒下,决定抛开 Spr ...

  3. 【JS 逆向百例】DOM事件断点调试,某商盟登录逆向

    声明 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 逆向目标 目标:某商盟登录 ...

  4. GIT专业术语教程-转载

    目录 一.版本控制概要 1.1.什么是版本控制 1.2.常用术语 1.3.常见的版本控制器 1.4.版本控制分类 1.4.1.本地版本控制 1.4.2.集中版本控制 1.4.3.分布式版本控制 1.5 ...

  5. Natapp 邀请码 积分

    邀请码: 29F145FC 充值95折

  6. 【构建docker镜像之插件篇】使用插件实战演示:docker-maven-plugin和jib-maven-plugin

    1.说明: docker容器化部署是非常流行的,Java应用如果要运行在docker环境,就要制作包含该应用的docker镜像,可以手动使用dockerfile和docker-compose制作镜像, ...

  7. Postfix + Extmail 企业邮件服务器搭建

    ExtMail套件用于提供从浏览器中登录.使用邮件系统的Web操作界面,而Extman套件用于提供从浏览器中管理邮件系统的Web操作界面.它以GPL版权释出,设计初衷是希望设计一个适应当前高速发展的I ...

  8. MongoDB 7.0 搭建 Sharding 副本集群

    本文是在ubuntu 22.03 系统版本上部署的,最低支持mongodb-6.0.4以上,所以这里安装mongodb7.0 1 安装mongo 安装方式有多种,本人是使用的第一种方式,时间也就20分 ...

  9. element-ui表格筛选,根据表头属性显示隐藏列

    效果: 步骤: 1.标签上添加要过滤的源数组 <el-table-column label="标签" :filters="filterList" filt ...

  10. Intel 4工艺太难了!酷睿Ultra终于突破5GHz

    无论是14nm还是10nm,Intel这些年的新工艺都有一个通性:刚诞生的时候性能平平,高频率都上不去,只能用于笔记本移动端(分别对应5代酷睿.10代酷睿),后期才不断成熟,比如到了13代酷睿就达到史 ...