Effective Python2 读书笔记1
Item 2: Follow the PEP 8 Style Guide
Naming
| functions, variables, attributes | lowercase_underscore |
| protected instance attributes | _leading_underscore |
| private instance attributes | __double_leading_underscore |
| classes, exceptions | CapitalizedWord |
| module-level constants | ALL_CAPS |
Expressions and Statements
Always use absolute names for modules when importing them, not names relative to the current module's own path.
# not good
import foo
foo.bar() # good
from foo import bar
bar()
Item 3: Know the Differences Between str and unicode
In Python2, there are two types that represent sequences of characters: str and unicode. Instances of str contain raw 8-bit values. Instances of unicode contain Unicode characters.
The most common encoding to represent Unicode characters as binary data is UTF-8. Unicode instance in Python 2 do not have an associated binary encoding. To convert Unicode characters to binary data, you must use the encode method. To convert binary data to Unicode characters, you must use the decode method.
The core of your program should use Unicode character type (unicode in Python 2) and should not assume anything about character encodings. This approach allows you to be very accepting of alternative text encoding while being strict about your output text encoding.
def to_unicode(unicode_or_str):
if isinstance(unicode_or_str, str):
value = unicode_or_str.decode('utf-8')
else:
value = unicode_or_str
return value # Instance of unicode def to_str(unicode_or_str):
if isinstance(unicode_or_str, unicode):
value = unicode_or_str.encode('utf-8')
else:
value = unicode_or_str
return value # Instance of str
In Python 2, file operations default to binary encoding. But still always open file using a binary mode (like 'rb' or 'wb').
Item 4: Write Helper Functions Instead of Complex Expressions
Python's syntax makes it all too easy to write single-line expressions that are overly complicated and difficult to read.
Move complex expressions into helper functions, especially if you need to use the same logic repeatedlly.
The if/else expression provides a more readable alternative to using Boolean operators like or and and in expressions.
from urllib.parse import parse_qs
my_values = parse_qs('red=5&blue=0&green=',
keep_blank_values=True)
print(repr(my_values)) >>>
{'red': [''], 'green': [''], 'blue': ['']} # just use get method
print('Red: ', my_values.get('red'))
print('Green: ', my_values.get('green'))
print('Opacity: ', my_values.get('opacity')) >>>
Red: ['']
Green: ['']
Opacity: None # what about set a default of 0, use or operator
red = int(my_values.get('red', [''])[0] or 0)
green = int(my_values.get('green', [''])[0] or 0)
opacity = int(my_values.get('opacity', [''])[0] or 0) # use if/else expression
red = my_values.get('red')
red = int(red[0]) if red[0] else 0 # ues if/else statement
green = my_values.get('green')
if green[0]:
green = int(green[0])
else:
green = 0 # helper function, make sense
def get_first_int(values, key, default=0):
found = values.get(key, [''])
if found[0]:
found = int(found[0])
else:
found = default
return found green = get_first_int(my_values, 'green')
Item 5: Know How to Slice Sequence
lst = [1, 2, 3]
first_twenty_items = lst[:20]
last_twenty_items = lst[-20:] lst[20] >>>
IndexError: list index out of range from copy import copy, deepcopy # lst[-0:] equal to copy(lst), same as lst[:] lst = [1, 2, 3, [4, 5]]
a = copy(lst)
b = deepcopy(lst) lst[-1].append(6)
lst.append(7) print lst
print a
print b >>>
[1, 2, 3, [4, 5, 6], 7]
[1, 2, 3, [4, 5, 6]]
[1, 2, 3, [4, 5]] lst = [1, 2, 3, 4]
lst[1:] = [3]
print lst >>>
[1, 3]
Item 6: Avoid Using start, end, and stride in a Single Slice
a = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
odds = a[::2]
evens = a[1::2]
print(odds)
print(evens) >>>
['red', 'yellow', 'blue']
['orange', 'green', 'purple'] # reverse a byte string, but break for unicode
x = b'mongoose'
y = x[::-1]
print(y) >>>
b'esoognom' a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
a[::2] # ['a', 'c', 'e', 'g']
a[::-2] # ['h', 'f', 'd', 'b']
a[2::2] # ['c', 'e', 'g']
a[-2::-2] # ['g', 'e', 'c', 'a']
a[-2:2:-2] # ['g', 'e']
a[2:2:-2] # []
Specifying start, end, and stride in a slice can be extremely confusing. Avoid using them together in a single slice.
Item 7: Use List Comprehensions Instead of map and filter
a = [1,2,3,4,55,6,7,7,8,9] # clear
even_squares = [x**2 for x in a if x % 2 == 0] # sucks
alt = map(lambda x: x**2, filter(lambda x: x % 2 == 0, a)) assert even_squares == list(alt)
Item 8: Avoid More Than Two Expressions in List Comprehensions
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [x for row in matrix for x in row]
print flat >>>
[1, 2, 3, 4, 5, 6, 7, 8, 9] squared = [[x**2 for x in row] for row in matrix]
print squared >>>
[[1, 4, 9], [16, 25, 36], [49, 64, 81]] my_lists = [
[[1, 2, 3], [4, 5, 6]],
#...
] # not good
flat = [x for sublist1 in my_lists
for sublist2 in sublist1
for x in sublist2] # clear
flat = []
for sublist1 in my_lists:
for sublist2 in sublist1:
flat.extend(sublist2)
List comprehensions with more than two expressions are very difficult to read and should be avoided.
Item 9: Consider Generator Expressions for Large Comprehensions
Generator expressions avoid memory issues by producing outputs one at a time as an iterator.
Item 10: Prefer enumerate Over range
flavor_list = ['vanilla', 'chocolate', 'pecan', 'strawberry'] # usually
for i in range(len(flavor_list)):
flavor = flavor_list[i]
print('%d: %s' % (i + 1, flavor)) # enumerate
for i, flavor in enumerate(flavor_list):
print('%d: %s' % (i + 1, flavor)) # specify which enumerate should begin count
for i, flavor in enumerate(flavor_list, 1):
print('%d: %s' % (i, flavor))
Item 11: Use zip to Process Iterators in Parallel
names = ['Cecilia', 'Lise', 'Marie']
letters = [len(n) for n in names] # usually
longest_name = None
max_letters = 0 for i in range(len(names)):
count = letters[i]
if count > max_letters:
longest_name = names[i]
max_letters = count print(longest_name) # using enumerate
for i, name in enumerate(names):
count = letters[i]
if count > max_letters:
longest_name = names[i]
max_letters = count # using zip
for name, count in zip(names, letters):
if count > max_letters:
longest_name = name
max_letters = count
In Python 2, use izip from the itertools built-in module when zip very large iterators.
If the lengths tht lists you want to zip aren't equal, use izip_longest.
Item 12: Avoid else Blocks After for and while Loops
Just Avoid use it.
Item 13: Take Advantage of Each Block in try/except/else/finally
Else Blocks
When the try block doesn't raise an exception, the else block will run. The else block helps you minimize the amount of code in the try block and improves readability.
def load_json_key(data, key):
try:
result_dict = json.loads(data) # May raise ValueError
except ValueError as e:
raise KeyError from e:
else:
return result_dict[key] # May raise KeyError
The else clause ensure that what follows the try/except is visually distinguished from the except block. This makes the exception propagation behavior clear.
The try/finally compound statement lets you run cleanup code regardless of whether exceptions were raised in the try block.
The else block helps you minimize the amount of code in try blocks and visually distinguish the success case from the try/except blocks.
An else block can be used to perform additional actions after a successful try block but before common cleanup in a finally block.
Effective Python2 读书笔记1的更多相关文章
- Effective Python2 读书笔记3
Item 22: Prefer Helper Classes Over Bookkeeping with Dictionaries and Tuples For example, say you wa ...
- Effective Python2 读书笔记2
Item 14: Prefer Exceptions to Returning None Functions that returns None to indicate special meaning ...
- Effective STL 读书笔记
Effective STL 读书笔记 标签(空格分隔): 未分类 慎重选择容器类型 标准STL序列容器: vector.string.deque和list(双向列表). 标准STL管理容器: set. ...
- Effective STL读书笔记
Effective STL 读书笔记 本篇文字用于总结在阅读<Effective STL>时的笔记心得,只记录书上描写的,但自己尚未熟练掌握的知识点,不记录通用.常识类的知识点. STL按 ...
- effective c++读书笔记(一)
很早之前就听过这本书,找工作之前读一读.看了几页,个人感觉实在是生涩难懂,非常不符合中国人的思维方式.之前也有博主做过笔记,我来补充一些自己的理解. 我看有人记了笔记,还不错:http://www.3 ...
- Effective Java读书笔记完结啦
Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...
- Effective java读书笔记
2015年进步很小,看的书也不是很多,感觉自己都要废了,2016是沉淀的一年,在这一年中要不断学习.看书,努力提升自己 计在16年要看12本书,主要涉及java基础.Spring研究.java并发.J ...
- Effective Objective-C 读书笔记
一本不错的书,给出了52条建议来优化程序的性能,对初学者有不错的指导作用,但是对高级阶段的程序员可能帮助不是很大.这里贴出部分笔记: 第2条: 使用#improt导入头文件会把头文件的内容全部暴露到目 ...
- 【Effective C++读书笔记】序
C++ 是一个难学易用的语言! [C++为什么难学?] C++的难学,不仅在其广博的语法,以及语法背后的语义,以及语义背后的深层思维,以及深层思维背后的对象模型: C++的难学还在于它提供了四种不同而 ...
随机推荐
- HTML5的postMessage使用记要
HTML5提出了一个新的用来跨域传值的方法,即postMessage(这个名字太通俗了所以你最好看看是不是自己写过一个同名的把它覆盖了).幸运的是IE8就开始支持了. 我们假设有两个网站,1.com与 ...
- 更好的pip工作流
转自:http://codingpy.com/article/a-better-pip-workflow-recommended-by-kenneth/ 现在大家开发Python应用时,在代码库的根目 ...
- eclipse-将同一个文件分屏显示
windows-editor-toggle split editor 效果图
- Android基础总结(一)
Android项目的目录结构 Activity:应用被打开时显示的界面 src:项目代码 R.java:项目中所有资源文件的资源id Android.jar:Android的jar包,导入此包方可使用 ...
- JavaScript 中对内存的一些了解
在使用JavaScript进行开发的过程中,了解JavaScript内存机制有助于开发人员能够清晰的认识到自己写的代码在执行的过程中发生过什么,也能够提高项目的代码质量.其实关于内存的文章也有很多,写 ...
- 使用css打造形形色色的形状!
使用css打造形形色色的形状! css是非常强大的工具,如果我们掌握的好,那么许多复杂的形状不需要使用图片而直接使用css完成即可,这不仅有利于减少http请求以增强性能还便于日后的管理和维护,一举两 ...
- 使用n2n在没有公网IP条件下访问树莓派
实现:在树莓派2和客户机都没有公网IP条件下实现远程访问控制 不足:暂时没实现网页代理 因为校园网环境没有公网IP,无法直接访问树莓派.之前有想过SSH反向代理:使用VPN,ddns(花生壳.no-i ...
- ArcGIS Server开发教程系列(1) Arcgis server 10.1 的安装
本系列所使用的软件版本如下: Windows 7 X64 / Windows server 2008 X64 Arcgis for Desktop 10.1 Arcgis 10.1 for serve ...
- echarts统计图使用
网址:http://echarts.baidu.com 提示:不需要导入Jquery.js 使用: 1.导入js,echarts.js 2.创建容器 <!-- 为ECharts准备一个具备大小 ...
- 数据库性能优化常用sql脚本总结
最近闲来无事,正好抽出时间,来总结总结 sql性能优化方面的一下小技巧,小工具.虽然都是些很杂的东西,但是我个人觉得,如果真的清楚了里面的一下指标,或许真的能抵半个DBA. 有些时候,找不到DBA或者 ...