网络流(一)——Edmonds Karp算法
首先是一些关于网络流的术语:
源点:即图的起点。
汇点:即图的终点。
容量:有向边(u,v)允许通过的最大流量。
增广路:一条合法的从源点流向汇点的路径。
网络流问题是在图上进行解决的,我们通常可以将问题转化为:
给定一个有向图,每条边有一个容量,有两个点被标记做了源点与汇点,你要确定尽量多的从源点到汇点的路径,每条边被经过的次数不得超过它的容量。我们将一个合法解称作一个流,一条边被经过的次数称作其流量,最终流的总和称作整个流的流量。
我们的限制转化为:
每条边被经过的次数不得超过它的容量->每条边的流量不超过其流量,流由若干从源点到汇点的路径组成->除源点和汇点外,对于每个点,流入它的流量和等于从它流出的流量和。最大化整个流的流量->最大化从源点流出的流量。
前两个条件分别被称为容量限制和流量平衡。
可以显然地想到一个(不正确的)解法,即不停地找一条任意的路径并流过去。
如何做到"可以反悔"呢?
减少一条边上k的流量,相当于反向流过来k的流量。这个还是比较显然的。假设你把一些货物从a地运到b地,后来你发现运错了,那就再运回来就行了。定义一条边的残量,是指它还能流多少流量(即容量减去当前流量)。
刚刚的反思告诉我们:
在一条边流过去之后,我们需要反过来建一条边。如果边u流过去了一些流量,那么我们需要建一条反过来的边,比如叫做v。v的残量即为u当前的流量。沿着v流一些流量,对应到原问题中相当于在u这条边上少流了一些流量。这就是网络流最大流的核心思想。
FF方法
(1)在残量网络上找到一条从源点到汇点的道路(称为"增广路")
(2)取增广路上残量最小值v
(3)将答案加上v
(4)将增广路上所有边的残量减去v,而它们的反向边的残量加上v。
重复这个过程直到找不到增广路,就可以求出最大流。
步骤4中,一条边的反向边的反向边即为这条边本身(即它们两个互为反向边)。
首先这个算法是不会死循环的,因为每次增广都导致流量增加(并且增加的是整数),而流量有一个客观存在的最大值,所以它必定结束。
由于他没有指定存在多条增广路的时候选哪一条,所以我们先考虑最简单的情况:随便找一条。
经过实践,我们可以想到只增广最短路径。
然后讲一下EK算法:
EK算法
是FF的一种实现:每次寻找增广路增广。可以证明其复杂度是O((m^2)*n)的。
首先我们考虑该如何建反向边:
我们选择用邻接表存边(邻接矩阵受数据范围限制,一般无法开心的使用),那么反向边的编号该如何处理,才能使这两条边相互关联起来?
答案之一就是异或(不会请自行百科):
0^1 = 1, 1^1 = 0;
2^1 = 3, 3^1 = 2;
4^1 = 5, 5^1 = 4;
于是我们发现,异或1这一操作,可以将相邻的两个整数关联起来(偶数在前,奇数在后),然后我们可以选择从零开始存在,完美解决存边问题。
至于算法的核心思想,其实就是FF方法,只是进行了具体实现。
来一波核心代码:
int EK(int s, int t) //s为源点,为汇点
{
int DIS = ; //DIS用来记每次BFS找到的增广路的最大流量
int ans = ; //ans用来记最终答案
while ((DIS = BFS(s, t)) != -)
{
int cur = t;
while (cur != s)//根据BFS得出的前驱(pre)数组遍历路径,更改容量
{
e[pre[cur]].w -= DIS;
e[pre[cur] ^ ].w += DIS;
cur = e[pre[cur]].from;
}
ans += DIS;
}
return ans; //返回答案
}
BFS的任务是得出的前驱(pre)数组(就是一条增广路),并记录到每个点为止的最大流量(flow)数组。
BFS找到一条增广路就应该返回。且不走重点(否则复杂度将无法承受)。
完整代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <cctype> using namespace std; const int MAXN = ;
const int INF = ; struct Edge {
int from;
int to;
int w;
int next;
}e[MAXN << ]; int n, m, s, t, x, y, z;
int cnt = -;
int f[MAXN];
int pre[MAXN];
int flow[MAXN]; queue <int> q; int min(int a, int b)
{
if (a <= b) return a;
else return b;
} int read()
{
int x = ;
int k = ;
char c = getchar(); while (!isdigit(c))
if (c == '-') k = -, c = getchar();
else c = getchar(); while (isdigit(c))
x = x * + c - '',
c = getchar();
return k * x;
} int BFS(int s, int t)
{
while (!q.empty()) q.pop();
memset(pre, -, sizeof(pre));
memset(flow, 0x7f, sizeof(flow));
pre[s] = ;
q.push(s);
flow[s] = INF;
while (!q.empty())
{
int cur = q.front();
q.pop(); if (cur == t) break; for (int i = f[cur]; i != -; i = e[i].next)
{
if (pre[e[i].to] == - && e[i].w > )
{
pre[e[i].to] = i;
flow[e[i].to] = min(flow[cur], e[i].w);
q.push(e[i].to);
}
} }
if (pre[t] == -) return -;
return flow[t];
} void Add_edge(int from, int to, int w)
{
++cnt;
e[cnt].from = from;
e[cnt].to = to;
e[cnt].w = w;
e[cnt].next = f[from];
f[from] = cnt;
} int EK(int s, int t)
{
int DIS = ;
int ans = ;
while ((DIS = BFS(s, t)) != -)
{
int cur = t;
while (cur != s)
{
e[pre[cur]].w -= DIS;
e[pre[cur] ^ ].w += DIS;
cur = e[pre[cur]].from;
}
ans += DIS;
}
return ans;
} int main()
{
n = read();
m = read();
s = read();
t = read(); memset(f, -, sizeof(f)); for (int i = ; i <= m; ++i)
{
x = read();
y = read();
z = read();
Add_edge(x, y, z);
Add_edge(y, x, );
} cout << EK(s, t);
char c = getchar();
return ;
}
网络流(一)——Edmonds Karp算法的更多相关文章
- 最大流算法之Ford-Fulkerson算法与Edmonds–Karp算法
引子 曾经很多次看过最大流的模板,基础概念什么的也看了很多遍.也曾经用过强者同学的板子,然而却一直不会网络流.虽然曾经尝试过写,然而即使最简单的一种算法也没有写成功过,然后对着强者大神的代码一点一点的 ...
- 网络流-最大流问题 ISAP 算法解释(转自Renfei Song's Blog)
网络流-最大流问题 ISAP 算法解释 August 7, 2013 / 编程指南 ISAP 是图论求最大流的算法之一,它很好的平衡了运行时间和程序复杂度之间的关系,因此非常常用. 约定 我们使用邻接 ...
- HDU3549 Flow Problem(网络流增广路算法)
题目链接. 分析: 网络流增广路算法模板题.http://www.cnblogs.com/tanhehe/p/3234248.html AC代码: #include <iostream> ...
- hdu2389二分图之Hopcroft Karp算法
You're giving a party in the garden of your villa by the sea. The party is a huge success, and every ...
- Edmonds 开花算法
Edmonds 开花算法 input: 图G,匹配M,未饱和点u idea: 查找从 u 開始的 M-交错路径.对每一个顶点记录父亲节点. 发现花朵.则收缩. 维护 S 和 T.S 表示沿着已经饱和的 ...
- POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8189 Accepted: ...
- 网络流入门--最大流算法Dicnic 算法
感谢WHD的大力支持 最早知道网络流的内容便是最大流问题,最大流问题很好理解: 解释一定要通俗! 如右图所示,有一个管道系统,节点{1,2,3,4},有向管道{A,B,C,D,E},即有向图一张. ...
- 网络流的$\mathfrak{Dinic}$算法
网络流想必大家都知道,在这不过多赘述.网络流中有一类问题是让你求最大流,关于这个问题,许多计算机学家给出了许多不同的算法,在这里--正如标题所说--我们只介绍其中的一种--\(\tt{Dinic}\) ...
- 网络流之最大流算法(EK算法和Dinc算法)
最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个 ...
随机推荐
- shell常用正则表达式
转载自: http://www.cnblogs.com/linhaifeng/p/6596660.html 和 http://www.blogjava.net/jasmine214--love/arc ...
- php输出变量加{}的作用
之前在输出字符串中有变量如 echo “中间有”; echo $i; echo "变量"; 现在发现一个好方法,把变量用{}括起来 echo "中间有{$i}变量&quo ...
- poj3728The merchant树剖+线段树
如果直接在一条直线上,那么就建线段树 考虑每一个区间维护最小值和最大值和答案,就符合了合并的条件,一个log轻松做 那么在树上只要套一个树剖就搞定了,多一个log也不是问题 注意考虑在树上的话每一条链 ...
- Netty(5)@Sharable
问题:我写了MyDecoder which extends ByteToMessageDecoder,单线程没问题,但是多线程时,报'the handler should be sharable'.查 ...
- Jmeter4.0----测试数据说明之查看结果树(10)
1.说明 在用jmeter辅助测试的过程中,我们经常需要根据接口返回的相关信息对我们测试的系统做相应的分析,所以呢,常常会用到jmeter中不同类型的监听器获取接口信息. 2.步骤 第一步: 线程组 ...
- Net Core2-JWT
NET Core2 http://www.cnblogs.com/wyt007/category/1130278.html JWT 设计解析及定制 前言 上一节我们讲述的书如何使用jwt token, ...
- 过流监测芯片ADS720/723
在电机应用领域经常需要用到过流监测和保护,allegro的ADS系列就可以很好实现.将芯片串接在电机之前,根据自己要保护的电流大小选择合适的量程,个根据自己ADC测量电压范围选择合适的灵敏度.这类芯片 ...
- D. Restructuring Company 并查集 + 维护一个区间技巧
http://codeforces.com/contest/566/problem/D D. Restructuring Company time limit per test 2 seconds m ...
- 配置本地和远程maven仓库
<mirrors><mirror> <id>alimaven</id> <name>aliyun maven</name> &l ...
- python Fuction 方法的调用
def display():#无参数 print("No") return # display() def callfun():#调用 print("2") d ...