题目描述:

vjudge

POJ

题解:

半平面交判核的存在性。

重点在于一个点的核也算核

这样的话普通的求多边形的版本就要加一个特判。

就是把剩下的一个节点暴力带回所有直线重判,这时判叉积是否$\leq 0$,而不是$<0$。

好人一生平安

代码:

#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x)<=eps)return ;
return x>?:-;
}
struct Point
{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
Point operator + (const Point&a)const{return Point(x+a.x,y+a.y);}
Point operator - (const Point&a)const{return Point(x-a.x,y-a.y);}
Point operator * (const double&a)const{return Point(x*a,y*a);}
double operator ^ (const Point&a)const{return x*a.y-y*a.x;}
};
typedef Point Vector;
typedef vector<Point> Pol;
double ang(const Vector&v){return atan2(v.x,v.y);}
struct Line
{
Point p;
Vector v;
Line(){}
Line(Point p,Vector v):p(p),v(v){}
bool operator < (const Line&a)const
{
return ang(v)<ang(a.v);
}
};
bool Onleft(Line a,Point p)
{
return dcmp((a.v^(p-a.p)))>;
}
bool onleft(Line a,Point p)
{
return dcmp((a.v^(p-a.p)))>=;
}
Point L_L(Line a,Line b)
{
double t = ((b.p-a.p)^b.v)/(a.v^b.v);
return a.p+a.v*t;
}
int T,n;
Point p[N],tp[N];
Line s[N],ts[N];
int bpmj()
{
memset(ts,,sizeof(ts));memset(tp,,sizeof(tp));
sort(s+,s++n);
int hd,tl;
ts[hd=tl=]=s[];
for(int i=;i<=n;i++)
{
while(hd<tl&&!Onleft(s[i],tp[tl-]))tl--;
while(hd<tl&&!Onleft(s[i],tp[hd]))hd++;
ts[++tl] = s[i];
if(!dcmp(ts[tl].v^ts[tl-].v))
{
tl--;
if(Onleft(ts[tl],s[i].p))ts[tl]=s[i];
}
if(hd<tl)tp[tl-] = L_L(ts[tl-],ts[tl]);
}
while(hd<tl&&!Onleft(ts[hd],tp[tl-]))tl--;
if(hd==tl)
{
Point now = tp[hd];
for(int i=;i<=n;i++)
if(!onleft(s[i],now))
return ;
}
return ;
}
void build1()
{
for(int i=;i<n;i++)s[i]=Line(p[i],p[i+]-p[i]);
s[n] = Line(p[n],p[]-p[n]);
}
void build2()
{
for(int i=,j=n;i<j;i++,j--)swap(p[i],p[j]);
for(int i=;i<n;i++)s[i]=Line(p[i],p[i+]-p[i]);
s[n] = Line(p[n],p[]-p[n]);
}
void work()
{
scanf("%d",&n);int ans = ;
for(int i=;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
build1();
ans|=bpmj();
build2();
ans|=bpmj();
if(ans)puts("YES");
else puts("NO");
}
int main()
{
// freopen("tt.in","r",stdin);
scanf("%d",&T);
while(T--)work();
return ;
}

poj3335 Rotating Scoreboard的更多相关文章

  1. 山东省ACM多校联盟省赛个人训练第六场 poj 3335 D Rotating Scoreboard

    山东省ACM多校联盟省赛个人训练第六场 D Rotating Scoreboard https://vjudge.net/problem/POJ-3335 时间限制:C/C++ 1秒,其他语言2秒 空 ...

  2. 【POJ 3335】 Rotating Scoreboard (多边形的核- - 半平面交应用)

    Rotating Scoreboard Description This year, ACM/ICPC World finals will be held in a hall in form of a ...

  3. poj 3335 Rotating Scoreboard - 半平面交

    /* poj 3335 Rotating Scoreboard - 半平面交 点是顺时针给出的 */ #include <stdio.h> #include<math.h> c ...

  4. poj 3335 Rotating Scoreboard(半平面交)

    Rotating Scoreboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6420   Accepted: 25 ...

  5. POJ 3335 Rotating Scoreboard(半平面交 多边形是否有核 模板)

    题目链接:http://poj.org/problem? id=3335 Description This year, ACM/ICPC World finals will be held in a ...

  6. poj 3335 Rotating Scoreboard (Half Plane Intersection)

    3335 -- Rotating Scoreboard 给出一个多边形,要求判断它的内核是否存在. 还是半平面交的题,在这道题中,公告板允许其所在位置与直线共线也算是可见,于是我们就可以将每一条直线微 ...

  7. POJ3335:Rotating Scoreboard——题解

    http://poj.org/problem?id=3335 题目大意:给按照顺时针序的多边形顶点,问其是否有内核. —————————————————————————————— 看了两个小时的资料, ...

  8. POJ 3335 Rotating Scoreboard(多边形的核)

    题目链接 我看的这里:http://www.cnblogs.com/ka200812/archive/2012/01/20/2328316.html 然后整理一下当做模版.0换成eps,会wa,应该要 ...

  9. POJ 3335 Rotating Scoreboard(半平面交求多边形核)

    题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...

随机推荐

  1. 1366 - Incorrect string value:'\xE5\xBC\xA0\xE4\xB8\x89' for column 'name' a 错误修改

    把name的字符集修改成 utf8 ,然后把表关了从新打开,就可以了 如果还不行,就从新创表,在创表的时候修改name的字符集 如果还不行,就修改my.ini 它在你的mysql安装路径里 [mysq ...

  2. Huber鲁棒损失函数

    在统计学习角度,Huber损失函数是一种使用鲁棒性回归的损失函数,它相比均方误差来说,它对异常值不敏感.常常被用于分类问题上. 下面先给出Huber函数的定义: 这个函数对于小的a值误差函数是二次的, ...

  3. [洛谷P4315] 月下”毛景“树

    题目链接: 点我 题目分析: 树剖.将边权下放到下方点上(为什么要选深度更深的点?一个父亲可能对应多个儿子,但一个儿子只有一个父亲,即可以保证每个点只保存一条边权)成为经典点权+树剖裸题 注意链计算时 ...

  4. AD17笔记

    1 铺铜修改后自动重铺设置:在最右下角

  5. 动态时间规整DTW

    动态时间规整DTW 1 概述 动态时间规整是一个计算时间序列之间距离的算法,是为了解决语音识别领域中语速不同的情况下如何计算距离相似度的问题. 相对于用经典的欧式距离来计算相似度而言,DTW在数据点个 ...

  6. opencv作业

    作业下载地址: 链接:http://pan.baidu.com/s/1qYQnbkw 密码:v7y9

  7. Activemq和Rabbitmq端口冲突

    端口5672被占用了!使用cmd命令行查到被erl.exe占用了,想到这不是RabbitMQ的服务嘛 netstat -aon | findstr "5672"tasklist | ...

  8. EF5 通用数据层 增删改查操作,泛型类

    using System; using System.Collections.Generic; using System.Data.Entity.Infrastructure; using Syste ...

  9. 2、HTTP状态码

    HTTP状态码 当浏览者访问一个网页时,浏览者的浏览器会向网页所在服务器发出请求.当浏览器接收并显示网页前,此网页所在的服务器会返回一个包含HTTP状态码的信息头(server header)用以响应 ...

  10. SPEC CPU 使用简介

    SPEC CPU2000简介 SPEC CPU2000是由标准性能评价机构“The Standard Performance Evaluation Corporation (SPEC)”开发的用于评测 ...