• 求上升子序列的最大和。O(n^2)会暴力,在查询的时候要用线段树维护
  • 因为权值是浮点数,故先离散化一下,设第 i 个位置的权值,从小到大排名为 id。那么dp转移中 $$d[i] = max(d[i],d[i] + d[j])$$ 其中$$j<i & id[j]<id[i]$$ 故线段树结点区间[l,r]维护的是id = l 到 id = j 中的最大 dp值
#include <bits/stdc++.h>
using namespace std;
const int N = 100000;
double vol[N],r,h;
int n,has[N],g[N],dp[N],tot;
int c[N];
vector<double> v;
int getId(double a){
return lower_bound(v.begin(),v.end(),a)-v.begin()+1;
}
struct Tree{
int l,r;
double data;
}t[4*N];
void build(int p,int l,int r){
t[p].l = l;
t[p].r = r;
if(l==r){
t[p].data = 0;return;
}
int mid = l+r>>1;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].data = 0;
}
void change(int p,int x,double val){
if(t[p].l == t[p].r && t[p].l == x){
t[p].data = max(t[p].data,val);
return ;
}
int mid = (t[p].l+t[p].r)>>1;
if(x<=mid)change(p*2,x,val);
else change(p*2+1,x,val);
t[p].data = max(t[p*2].data,t[p*2+1].data);
}
double ask(int p,int l,int r){
if(t[p].l>=l&&t[p].r<=r)return t[p].data;
int mid = (t[p].l+t[p].r)>>1;
double val = 0;
if(l<=mid)val = max(val,ask(p*2,l,r));
if(r>mid)val = max(val,ask(p*2+1,l,r));
return val;
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
scanf("%lf%lf",&r,&h);
vol[i] = acos(-1) * r * r * h;
v.push_back(vol[i]);
}
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
build(1,1,n);
double res = 0;
for(int i=1;i<=n;i++){
int id = getId(vol[i]);
double now = ask(1,1,id-1);
now = max(vol[i],vol[i]+now);
res = max(res,now);
change(1,id,now);
}
printf("%.10lf\n",res);
return 0;
}
  • 辗转了很多次,惭愧,线段树做的题太少了

法二:离散化+树状数组

#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
const int inf = 0x3f3f3f3f;
double vol[N],c[N];
vector<double> v;
int n,g[N];
int getId(double res){
return lower_bound(v.begin(),v.end(),res) - v.begin() + 1;
}
void add(int x,double y){
c[x] = y;
for(;x<=n;x+=x&-x)c[x] = max(c[x],y);
}
double ask(int x){
double res = 0;
for(;x;x-=x&-x)res = max(res,c[x]);
return res;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
double r,h;
scanf("%lf%lf",&r,&h);
double vo = acos(-1) * r * r * h;
vol[i] = vo;
v.push_back(vo);
}
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
double res = 0;
for(int i=1;i<=n;i++){
int x = getId(vol[i]);
double now = ask(x-1) + vol[i];
add(x,now);
res = max(res,now);
}
printf("%.10lf\n",res);
return 0;
}

CF-629 D - Babaei and Birthday Cake (离散化 + 线段树|树状数组)的更多相关文章

  1. Codeforces 629D Babaei and Birthday Cake(线段树优化dp)

    题意: n个蛋糕编号从小到大编号,j号蛋糕可以放在i号上面,当且仅当j的体积严格大于i且i<j,问最终可得的最大蛋糕体积. 分析: 实质为求最长上升子序列问题,设dp[i]从头开始到第i位的最长 ...

  2. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  3. codeforces 629D D. Babaei and Birthday Cake (线段树+dp)

    D. Babaei and Birthday Cake time limit per test 2 seconds memory limit per test 256 megabytes input ...

  4. cf 61 E. Enemy is weak 离散化+树状数组

    题意: 给出一个数组,数组的每一个元素都是不一样的,求出对于3个数组下标 i, j, k such that i < j < k and ai > aj > ak where ...

  5. CF 61E 树状数组+离散化 求逆序数加强版 三个数逆序

    http://codeforces.com/problemset/problem/61/E 题意是求 i<j<k && a[i]>a[j]>a[k] 的对数 会 ...

  6. CF Educational Codeforces Round 10 D. Nested Segments 离散化+树状数组

    题目链接:http://codeforces.com/problemset/problem/652/D 大意:给若干个线段,保证线段端点不重合,问每个线段内部包含了多少个线段. 方法是对所有线段的端点 ...

  7. hdu多校第九场 1002 (hdu6681) Rikka with Cake 树状数组维护区间和/离散化

    题意: 在一块长方形蛋糕上切若干刀,每一刀都是从长方形某条边开始,垂直于这条边,但不切到对边,求把长方形切成了多少块. 题解: 块数=交点数+1 因为对于每个交点,唯一且不重复地对应着一块蛋糕. 就是 ...

  8. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  9. 线段树&树状数组与离散化的妙用

    牛客2019多校联盟Day7 Fine the median 题意:  每次给数组插入区间[Li,Ri] 内的所有数,每操作一次查询中位数. 遇到这题真的算是巧合,然而就是这种冥冥之中的缘分,给了我线 ...

随机推荐

  1. 剑指Offer的学习笔记(C#篇)-- 包含min函数的栈

    题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 一 . 题目该怎么想 1 . 定义栈的数据结构:实现Push.Pop.Top.Min方 ...

  2. Java使用FFmpeg处理视频文件的方法教程

    这篇文章主要给大家介绍了关于Java使用FFmpeg处理视频文件的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧 前言 本文主要 ...

  3. ERROR 1366 (HY000): Incorrect string value: '\xB3\xA4\xC9\xB3' for column

    在用以下方法之前,请先执行下面命令查看. show variables like 'character%';  ——查看所有编码方式 show create table table_name;   — ...

  4. codeforces772C

    给一段序列,给你去掉所有数字的顺序,输出每去掉一个数,当前联通的子序列的最大值. 倒着来,每次插入一个数,然后求联通的最大值,线段树每个节点标记一下,区间的左右是否插入了数字,还有如果有数字从左边/右 ...

  5. Zeppelin的入门使用系列之使用Zeppelin来运行Spark SQL(四)

    不多说,直接上干货! 前期博客 Zeppelin的入门使用系列之使用Zeppelin来创建临时表UserTable(三) 1. 运行年龄统计的Spark SQL (1)  输入Spark SQL时,必 ...

  6. (转载)Python中模块的发布与安装

    模块(Module) Python中有一个概念叫做模块(module),这个和C语言中的头文件以及Java中的包很类似,比如在Python中要调用sqrt函数,必须用import关键字引入math这个 ...

  7. 打war包时无法把src/main/java里的xml文件打包上去

    maven打包默认打src/mian/resource里面的xml,而不会去src/main/java,所以 再pom.xml里的bulid节点里加上 <resources> <re ...

  8. C#字符串变量使用

    string由于是引用类型,所以,声明的字符串变量会存储到堆上,而且该变量是不可变的,一旦初始化了该变量,该内存区域中存储的内容将不能更改.在对字符串操作时,是在堆上创建了一个新的字符串变量,并将新的 ...

  9. Git入门学习总结

    用了两天时间看完廖雪峰老师的git教程(http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b0 ...

  10. 判断JS数据类型的几种方法

    原文转自http://www.cnblogs.com/onepixel/p/5126046.html! 说到数据类型,我们先说一下JavaScript 中常见的几种数据类型: 基本类型:string, ...