本来抄了篇题解,后来觉得题解都太不友好(我太菜了),一气之下自己打。。。一打打到第二天QAQ

首先什么边也不加时,总路程就是2*(n-1)

考虑k=1的时候,答案显然是2*(n-1)-直径+1=2*n-直径-1,如果能加一条边的话,因为希望减少的尽可能多,那么只需要把直径的首尾接起来,就不需要来回走,加一就是加了这一条新加入的边。

而k=2的时候,首先还是往最长链上面思考。然而做k=1的时候已经用掉了一段,我们需要k=2的和k=1的不重叠。

于是乎,我们跑完直径后之后把直径上的边权全部修改为-1,再跑一遍直径就可以了。那权值为-1的边又被选了就是考虑第一次算这条边的时候加了1,第二次的时候是-1,相当于是这条边没有产生任何贡献。所以最后答案是2(n-1)-(直径1-1)-(直径2-1)=2n-直径1-直径2

对了,负权的树一定要用DP跑直径,不要像我一样傻乎乎的用dfs(妄想dfs一石二鸟,何不如直接全DP(但我不会用DP记路径))
 
对比一下大佬的代码:我的需要专门去找第一次直径的路径再修改,就是fd_p()函数,所以会跑得慢一些。。。。

哪位大佬能教教我DP记路径吗。。。。感激不尽( ⊙ o ⊙ )啊!

我的傻乎乎的代码

#include<cstdio>
#include<iostream>
#include<cstring>
#define R register int
using namespace std;
const int N=,Inf=0x3f3f3f3f;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,k,mx,mx1,cnt,st,ed;
int pre[N],fir[N],cnte[N],d[N];
struct edge{
int v,w,nxt;
#define v(i) e[i].v
#define w(i) e[i].w
#define nxt(i) e[i].nxt
}e[N<<];
inline void add(int u,int v,int w) {v(++cnt)=v,w(cnt)=w,nxt(cnt)=fir[u],fir[u]=cnt;}
namespace _dp {
void dp(int u,int fa) {
for(R i=fir[u];i;i=nxt(i)) {
R v=v(i);
if(v==fa) continue;
dp(v,u);
mx=max(mx,d[u]+d[v]+w(i));
d[u]=max(d[u],d[v]+w(i));
}
}
inline void solve() {
memset(d,,sizeof(d));
dp(,);
}
}
inline void dfs(int u,int fa) {
for(R i=fir[u];i;i=nxt(i)) {
R v=v(i);
if(v==fa) continue;
d[v]=d[u]+w(i);
dfs(v,u);
}
}
inline void solve() {
memset(d,0x3f,sizeof(d));
d[]=; dfs(,); mx=-Inf; st=,ed=;
for(R i=;i<=n;++i) if(d[i]>mx&&d[i]!=Inf&&i!=)
mx=d[i],st=i;
memset(d,0x3f,sizeof(d));
d[st]=,dfs(st,); mx=-Inf;
for(R i=;i<=n;++i) if(d[i]>mx&&d[i]!=Inf&&i!=st)
mx=d[i],ed=i;
}
inline void fd_p(int u,int fa) {
for(R i=fir[u];i;i=nxt(i)) {
R v=v(i);
if(v==fa) continue;
fd_p(v,u);
pre[v]=u;
cnte[v]=i;
}
}
signed main() {
n=g(),k=g();
for(R i=,u,v;i<n;++i) u=g(),v=g(),add(u,v,),add(v,u,);
solve();
if(k==) {printf("%d\n",*n-mx-); return ;}
fd_p(st,); mx1=mx; pre[st]=;
for(R i=ed;i;i=pre[i]) if(cnte[i]&) w(cnte[i])=-,w(cnte[i]+)=-; else w(cnte[i])=-,w(cnte[i]-)=-;
mx=;
_dp::solve();
printf("%d\n",*n-mx1-mx);
}

我看不懂的代码(fromljh2000%%%%%)

#include<cstdio>
#include<iostream>
#include<cstring>
#define R register int
using namespace std;
const int N=;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,k,cnt,anss,ans,rt,S,SP;
int fir[N],nxt[N],nxte[N],f[N][];
struct edge{
int v,w,nxt;
#define v(i) e[i].v
#define w(i) e[i].w
#define nxt(i) e[i].nxt
}e[N<<];
inline void add(int u,int v,int w) {v(++cnt)=v,w(cnt)=w,nxt(cnt)=fir[u],fir[u]=cnt;}
inline void dfs(int u,int fa) {
R crt,s=,sp=;
for(R i=fir[u];i;i=nxt(i)) {
R v=v(i);
if(v==fa) continue;
dfs(v,u);
crt=f[v][]+w(i);
if(crt>f[u][]) s=nxt[u],sp=nxte[u],f[u][]=f[u][],f[u][]=crt,nxt[u]=v,nxte[u]=i;
else if(crt>f[u][]) f[u][]=crt,s=v,sp=i;
}
if(f[u][]+f[u][]>ans) {
ans=f[u][]+f[u][]; rt=u,S=s,SP=sp;
}
}
signed main() {
n=g(),k=g(); R x;
for(R i=,u,v;i<n;++i) u=g(),v=g(),add(u,v,),add(v,u,);
dfs(,);
anss=*(n-)-ans+;
if(k==) {printf("%d\n",anss); return ;}
if(f[rt][]>) {
x=S; w(SP)=-;
while(nxt[x]) w(nxte[x])=-,x=nxt[x];
}
x=rt;
while(nxt[x]) w(nxte[x])=-,x=nxt[x];
ans=; memset(f,,sizeof(f));
dfs(,); anss-=ans-; printf("%d\n",anss);
}

2019.04.02

题解 BZOJ 1912 && luogu P3629 [APIO2010]巡逻 (树的直径)的更多相关文章

  1. 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925

    题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...

  2. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  3. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  4. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  5. P3629 [APIO2010]巡逻

    题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道 ...

  6. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  7. luogu题解 P1099 【树网的核】树的直径变式+数据结构维护

    题目链接: https://www.luogu.org/problemnew/show/P1099 https://www.lydsy.com/JudgeOnline/problem.php?id=1 ...

  8. Luogu 3629 [APIO2010]巡逻

    先考虑$k = 1$的情况,很明显每一条边都要被走两遍,而连成一个环之后,环上的每一条边都只要走一遍即可,所以我们使这个环的长度尽可能大,那么一棵树中最长的路径就是树的直径. 设直径的长度为$L$,答 ...

  9. 【BZOJ-1912】patrol巡逻 树的直径 + DFS(树形DP)

    1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1034  Solved: 562[Submit][St ...

随机推荐

  1. 分享知识-快乐自己:Oracle 创建序列 及 使用序列

    1.创建序列语法: create sequence 序列名 [可选参数] 序列名常定义为‘seq_XXX’的形式,创建序列不能使用replace 可选参数说明: increment by: 序列每次增 ...

  2. codeforces 705C C. Thor(模拟)

    题目链接: C. Thor time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. SqL注入攻击实践

    研究缓冲区溢出的原理,至少针对两种数据库进行差异化研究 缓冲区溢出原理 缓冲区溢出是指当计算机程序向缓冲区内填充的数据位数超过了缓冲区本身的容量.溢出的数据覆盖在合法数据上.理想情况是,程序检查数据长 ...

  4. HDU 1166 敌兵布阵 (线段树单点修改和区间和查询)

    Input 第一行一个整数T,表示有T组数据.每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1 ...

  5. scala新人佑门

    scala语言 1. val和var val和var当前区别在于前者只能被赋值一次,就像java中的final,但是后者则可以随意覆盖: 2. Unit Unit返回代表空返回,类似于vo 3. 类型 ...

  6. XJar: Spring-Boot JAR 包加/解密工具,避免源码泄露以及反编译

    XJar: Spring-Boot JAR 包加/解密工具,避免源码泄露以及反编译 <?xml version="1.0" encoding="UTF-8" ...

  7. Apress 出版社电子书

    http://www.apress.com/ 国外收费电子书网站,电子书权威,比国内的还便宜

  8. 实验楼的php比赛题,网页数据提取。

    实验楼的php比赛题,网页数据提取. 题目的地址:https://www.shiyanlou.com/contests/lou5/challenges 以下代码是题目的答案 <?php head ...

  9. C# 获取外网IP和运营商和城市

    /// <summary> /// 获取客户端外网IP,省份,城市,运营商 /// 2012年12月18日 15:07 /// </summary> public class ...

  10. HDU - 6341 多校4 Let Sudoku Rotate(状压dfs)

    Problem J. Let Sudoku Rotate Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K ...