http://blog.csdn.net/mao_xiao_feng/article/details/53382790

计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

除去name参数用以指定该操作的name,与方法有关的一共两个参数

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

 

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

softmax的公式是:

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明

 

第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:


其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值

import tensorflow as tf

#our NN's output
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
#step2:do cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#do cross_entropy just one step
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!! with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)

  输出结果是:

  1. step1:softmax result=
  2. [[ 0.09003057  0.24472848  0.66524094]
  3. [ 0.09003057  0.24472848  0.66524094]
  4. [ 0.09003057  0.24472848  0.66524094]]
  5. step2:cross_entropy result=
  6. 1.22282
  7. Function(softmax_cross_entropy_with_logits) result=
  8. 1.2228

tf.nn.softmax_cross_entropy_with_logits的用法的更多相关文章

  1. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  2. [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...

  3. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  4. 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value

    In order to train our model, we need to define what it means for the model to be good. Well, actuall ...

  5. tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits

    tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...

  6. tf.nn.softmax_cross_entropy_with_logits()函数的使用方法

    import tensorflow as tf labels = [[0.2,0.3,0.5], [0.1,0.6,0.3]]logits = [[2,0.5,1], [0.1,1,3]] a=tf. ...

  7. 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))

    1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...

  8. tf.nn.softmax_cross_entropy_with_logits 分类

    tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...

  9. tf.nn.embedding_lookup()的用法

    函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, ...

随机推荐

  1. bash实例

    1写一个脚本,完成如下功能(使用函数):1.脚本使用格式:mkscript.sh [-D|--description "script description"] [-A|--aut ...

  2. Java中String类通过new创建和直接赋值字符串的区别

    方式一:String a = “aaa” ; 方式二:String b = new String(“aaa”); 两种方式都能创建字符串对象,但方式一要比方式二更优. 因为字符串是保存在常量池中的,而 ...

  3. js 获取data-属性值

    ].getAttribute('data-price'); 注意 document.getElementsByClassName('1pc_price')后面有[0],不然会报错.

  4. 101 Hack 50

    101 Hack 50 闲来无事.也静不下心,打个代码压压压惊 Hard Questions by kevinsogo Vincent and Catherine are classmates who ...

  5. mybatis的嵌套查询(嵌套查询nested select和嵌套结果nested results查询)区别

    (转自:http://blog.csdn.net/canot/article/details/51485955) Mybatis表现关联关系比hibernate简单,没有分那么细致one-to-man ...

  6. Windows connect to mysql failed: can't get hostname for your address

    My mysql is on Linux platform. When I used my laptop connect to mysql, I got error message like &quo ...

  7. DataSet的Merge方法合并两张表

    原文发布时间为:2008-08-01 -- 来源于本人的百度文章 [由搬家工具导入] UniqueConstraint uc = new UniqueConstraint("pk" ...

  8. 通过OpenGL ES在iOS平台实践增强现实(二)

    上一篇讲到如何使用OpenGL ES绘制一个3D场景,这一篇我们会配合使用iOS提供的CoreMotion框架把虚拟世界中的摄像机的位置朝向和设备实际的位置朝向绑定起来.本文还对防抖做了处理. 首先说 ...

  9. 标准C程序设计七---44

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  10. uniSWF使用注意事项

    美术方面,也就是使用FLASH这里的用户,请注意以下几点, 1.把相同的图案做成元件: 2.凡是补间产生的动画物体,也要做成元件: 以上便可以节省大量的空间,因为当迩把图案做成元件的话,UNISWF导 ...