题意:给定一棵树图,一个人从点s出发,只能走K步,每个点都有一定数量的苹果,要求收集尽量多的苹果,输出最多苹果数。

思路:

  既然是树,而且有限制k步,那么树形DP正好。

  考虑1个点的情况:(1)可能在本子树结束第k步(2)可能经过了j步之后,又回到本节点(第k步不在本子树)

  第二种比较简单,背包一下,就是枚举给本节点的孩子t多少步,收集到最多苹果数。第一种的话要求第k步终止于本节点下的某个子树中,那么只能在1个孩子子树中,所以应该是【其他孩子全部得走回来】+【本孩子不要求走回来】   or   【其他某个孩子中不走回来】+【本节点走回来】。

  用两个DP数组区分下“回”与“不回”就行了,注意,“不回”只能有1个孩子不要求其走回来,“回”是全部回。而“不要求回来”收集到的苹果数必定大于等于“要求回来”。

 //#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <iostream>
#define pii pair<int,int>
#define INF 0x3f3f3f3f3f3f3f3f
#define LL long long
using namespace std;
const int N=;
struct node
{
int from,to,next;
node(){};
node(int from,int to,int next):from(from),to(to),next(next){};
}edge[N*];
int edge_cnt, head[N], w[N];
void add_node(int from,int to)
{
edge[edge_cnt]=node(from, to, head[from]);
head[from]=edge_cnt++;
}
/*
dp[][][1] 记录每次都回到本节点的。
dp[][][0] 记录仅1次不回到本节点的。
*/
int dp[N][N][];
void DFS(int t,int far,int m)
{
node e;
for(int j=; j<=m; j++) dp[t][j][]=dp[t][j][]=w[t]; //既然能到这,至少带上本节点
if(m==) return;
for(int i=head[t]; i!=-; i=e.next)
{
e=edge[i];
if( e.to^far )
{
DFS(e.to, t, m-);
for(int j=m; j>; j-- )
{
for(int k=; k+<=j; k++ )
{
//所有分支都回。
dp[t][j][]=max( dp[t][j][], dp[t][j-k-][]+dp[e.to][k][] );
//本分支要回,但在其他分支不回。因为已经有1个不回了,所以更新在‘[0]’中。
dp[t][j][]=max( dp[t][j][], dp[t][j-k-][]+dp[e.to][k][] );
}
for(int k=; k+<=j; k++ )
{
//不回,但其他分支就必须全回。
dp[t][j][]=max( dp[t][j][], dp[t][j-k-][]+dp[e.to][k][] );
}
}
}
}
} int main()
{
//freopen("input.txt", "r", stdin);
int n, K, a, b;
while(~scanf("%d%d",&n,&K))
{
edge_cnt=;
memset(head, -, sizeof(head)); for(int i=; i<=n; i++) scanf("%d",&w[i]);
for(int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
add_node(a,b);
add_node(b,a);
}
DFS(, -, K);
cout<<dp[][K][]<<endl;
}
return ;
}

AC代码

POJ 2486 Apple Tree (树形DP,树形背包)的更多相关文章

  1. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

  2. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  3. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  4. poj 2486 Apple Tree (树形背包dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: poj-2486 题意 给一个n个节点的树,节点编号为1~n, 根节点为1, 每个节点有一个权值.    从 ...

  5. POJ 2486 Apple Tree(树形dp)

    http://poj.org/problem?id=2486 题意: 有n个点,每个点有一个权值,从1出发,走k步,最多能获得多少权值.(每个点只能获得一次) 思路: 从1点开始,往下dfs,对于每个 ...

  6. POJ 2486 Apple Tree (树形dp 经典题)

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const ...

  7. POJ 2486 Apple Tree ( 树型DP )

    #include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...

  8. POJ 2486 Apple Tree [树状DP]

    题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...

  9. POJ 2486 Apple Tree ——(树型DP)

    题意是给出一棵树,每个点都有一个权值,从1开始,最多走k步,问能够经过的所有的点的权值和最大是多少(每个点的权值只能被累加一次). 考虑到一个点可以经过多次,设dp状态为dp[i][j][k],i表示 ...

随机推荐

  1. TypeScript完全解读(26课时)_13.TypeScript完全解读-高级类型(2)

    13.TypeScript完全解读-高级类型(2) 高级类型中文网的地址:https://typescript.bootcss.com/advanced-types.html 创建文件并在index. ...

  2. DZNEmptyDataSet——空白数据集显示框架

    GitHub地址:DZNEmptyDataSet DZNEmptyDataSet DZNEmptyDataSet 是基于 UITableView/UICollectionView 的范畴/扩展(cat ...

  3. 668. Kth Smallest Number in Multiplication Table

    Nearly every one have used the Multiplication Table. But could you find out the k-th smallest number ...

  4. Telnet 对memcached进行数据操作

    连接Telnet 127.0.0.1 11211 存储数据 add news 0 1 8 (news为数据名称,1为存储的时间,当为0的时候则为永久储存,永久缓存最多为30天,8为长度) aaaaaa ...

  5. game学习资源收集

    一些国外网站 游戏ai相关 http://aigamedev.com/ http://www.gdcvault.com/ http://www-cs-students.stanford.edu/~am ...

  6. 面向对象-mixin设计模式的应用(多继承应用场景)

    什么是设计模式? 设计模式只是一种开发思想.不是什么固定的格式. 前人的好的思想,我们后人拿过来用! mixin设计模式: 1.mixin设计迷失可以在不对类的内容的修改前提下,扩展类的功能(添加父类 ...

  7. ADO学途 three day

    1· 程序的根本----数据 一个程序是用来处理数据算法的具体表现,可以说没有数据,程序就没有意义.今天主 要分享在一个程序中数据的支持者SQL server的建立和使用.首先当然不可缺少SQL se ...

  8. 干货:排名前16的Java工具类

    在Java中,工具类定义了一组公共方法,这篇文章将介绍Java中使用最频繁及最通用的Java工具类.以下工具类.方法按使用流行度排名,参考数据来源于Github上随机选取的5万个开源项目源码. 一. ...

  9. D. Pair Of Lines( Educational Codeforces Round 41 (Rated for Div. 2))

    #include <vector> #include <iostream> #include <algorithm> using namespace std; ty ...

  10. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...