4500: 矩阵

Time Limit: 1 Sec  Memory Limit: 256 MB
Submit: 326  Solved: 182
[Submit][Status][Discuss]

Description

有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作:
1. 选择一行, 该行每个格子的权值加1或减1。
2. 选择一列, 该列每个格子的权值加1或减1。
现在有K个限制,每个限制为一个三元组(x,y,c),代表格子(x,y)权值等于c。问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。如果存在输出”Yes”,否则输出”No”。

Input

先输入一个T(T <= 5)代表输入有T组数据,每组数据格式为:
第一行三个整数n, m, k (1 <= n, m,k <= 1000)。
接下来k行,每行三个整数x, y, c。

Output

对于每组数据,输出Yes或者No。

Sample Input

2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 1

Sample Output

Yes
No

HINT

Source

分析:

网格图...嗯,二分图...

对于一个限制$(x,y,c)$就代表$val[x]+val[y]=c$...所以我们$dfs$找到矛盾就好了...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=2000+5; int n,m,k,cas,cnt,pos,flag,w[maxn],hd[maxn],to[maxn],nxt[maxn],vis[maxn],val[maxn]; inline void add(int x,int y,int s){
w[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
} inline bool dfs(int x,int fa){
vis[x]=1;
for(int i=hd[x];i!=-1;i=nxt[i])
if(!vis[to[i]]){
val[to[i]]=w[i]-val[x];
if(!dfs(to[i],x)) return false;
}
else if(val[to[i]]!=w[i]-val[x])
return false;
return true;
} signed main(void){
scanf("%d",&cas);
while(cas--){
flag=0;cnt=0;
memset(hd,-1,sizeof(hd));
memset(vis,0,sizeof(vis));
memset(val,0,sizeof(val));
scanf("%d%d%d",&n,&m,&k);
for(int i=1,x,y,s;i<=k;i++)
scanf("%d%d%d",&x,&y,&s),add(x,y+n,s),add(y+n,x,s),pos=x;
for(int i=1;i<=n+m;i++)
if(!vis[i])
if(!dfs(i,-1)){
puts("No");flag=1;break;
}
if(!flag) puts("Yes");
}
return 0;
}

  


By NeighThorn

BZOJ 4500: 矩阵的更多相关文章

  1. BZOJ 4500: 矩阵 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4500 题解: 从行向列建边,代表一个格子a[i][j],对每个顶点的所有操作可以合并在一 ...

  2. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  3. 【BZOJ 4500 矩阵】

    Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 390  Solved: 217[Submit][Status][Discuss] Description ...

  4. bzoj 4500: 矩阵 差分约束系统

    题目: Description 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 选择一行, 该行每个格子的权值加1或减1. 选择一列, 该列每个格子的权值加1或减1. 现在有K ...

  5. bzoj 4500 矩阵 题解

    题意: 有一个 $ n * m $ 的矩阵,初始每个格子的权值都为 $ 0 $,可以对矩阵执行两种操作: 选择一行,该行每个格子的权值加1或减1. 选择一列,该列每个格子的权值加1或减1. 现在有 $ ...

  6. bzoj 4500: 矩阵【差分约束】

    (x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...

  7. BZOJ 4500: 矩阵 带权并查集

    这个思路挺巧妙的 ~ 定义一行/列的权值为操作后所整体增加的值. 那么,我们会有若干个 $a[x]+b[y]=c$ 的限制条件. 但是呢,我们发现符号是不能限制我们的(因为可加可减) 所以可以将限制条 ...

  8. [BZOJ 2738] 矩阵乘法 【分块】

    题目链接:BZOJ - 2738 题目分析 题目名称 “矩阵乘法” 与题目内容没有任何关系..就像VFK的 A+B Problem 一样.. 题目大意是给定一个矩阵,有许多询问,每次询问一个子矩阵中的 ...

  9. [BZOJ]1059 矩阵游戏(ZJOI2007)

    虽然说是一道水题,但小C觉得还是挺有意思的,所以在这里mark一下. Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N*N黑白 ...

随机推荐

  1. React 服务端渲染最佳解决方案

    最近在开发一个服务端渲染工具,通过一篇小文大致介绍下服务端渲染,和服务端渲染的方式方法.在此文后面有两中服务端渲染方式的构思,根据你对服务端渲染的利弊权衡,你会选择哪一种服务端渲染方式呢? 什么是服务 ...

  2. 1042: [HAOI2008]硬币购物

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3209  Solved: 2001[Submit][Status][Discuss] Descript ...

  3. 2018.10.30 NOIp模拟赛 T1 改造二叉树

    [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论 ...

  4. GPIO实现I2C协议模拟(1)

    最近需要用GPIO模拟I2C协议,如果是在Linux下面比较简单,但在Windows下面,是否有没Linux那么简单了. 索性自己对I2C协议还有一些了解,翻了SPEC并结合示波器量出的实际信号分析, ...

  5. Session 会话保持

    本文将详细讨论session的工作机制并且对在Java web application中应用session机制时常见的问题作出解答 一.术语session session,中文经常翻译为会话,其本来的 ...

  6. haystack(django的全文检索模块)

    haystack haystack是django开源的全文搜索框架 全文检索:标题可以检索,内容也可以检索 支持solr ,elasticsearch,whoosh 1.注册app 在setting. ...

  7. Admin站点

    使用admin站点 a.在settings.py中设置语言和时区 LANGUAGE_CODE = 'zh-hans' # 使用中国语言 TIME_ZONE = 'Asia/Shanghai' # 使用 ...

  8. Thread 小总结

    目录 线程概述 线程的定义 线程的启动 线程的状态 线程的方法属性 1.线程概述 线程是一个程序的多个执行路径,执行调度的单元,依托于进程的存在.线不仅可以共享进程的内在,而且还拥有一个属于自己的内存 ...

  9. stm32 flash和sram

    FLASH是用来存储程序的,SRAM是用来存储程序运行中的中间变量

  10. 14、响应式布局和BootStrap 全局CSS样式知识点总结-part1

    1.什么是响应式布局 响应式布局是Ethan Marcotte在2010年5月份提出的一个概念,这个概念是为解决移动互联网浏览而诞生的. 简而言之,就是一个网站能够兼容多个终端——而不是为每个终端做一 ...