题目链接

  题目描述非常直接,要求你用快速幂解决第一问,exgcd解决第二问,bsgs解决第三问。

  emmmm于是现学bsgs

  第二问让求最小整数解好烦啊……

  假设我们要求得方程$ax+by=c(mod p)$的最小整数解

  令$d=gcd(a,b)$

  我们求得一个解$x_0,y_0$使得$ax_0+by_0=d(mod p)$

  然后$x_0*frac{c}{d}$为最小整数解。

  

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long Pow(long long a,long long b,long long c){
long long ret=;
while(b){
if(b&) ret=(ret*a)%c;
a=(a*a)%c;
b>>=;
}
return ret;
} long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
x=;y=;
return a;
}
long long tmp=exgcd(b,a%b,x,y);
long long ret=x;x=y;y=ret-a/b*y;
return tmp;
} int main(){
int n=read(),m=read();
while(n--){
int y=read(),z=read(),p=read();
if(m==) printf("%lld\n",Pow(y,z,p));
else if(m==){
long long x,b;
long long now=exgcd(y,p,x,b);
if(z%now){
printf("Orz, I cannot find x!\n");
continue;
}
x/=now;
//exgcd(y/now,p/now,x,b);
x=(x+p/now)%(p/now);
printf("%lld\n",x*(z/now)%(p/now));
}
else{
if(y%p==){
printf("Orz, I cannot find x!\n");
continue;
}
map<long long,int>d;
long long m=ceil(sqrt(p));
for(int i=;i<=m;++i) d[Pow(y,i,p)*z%p]=i;
long long t=Pow(y,m,p);
long long ans=; bool flag=;
for(int i=;i<=m;++i){
ans=ans*t%p;
if(d.count(ans)){
long long ret=i*m%p-d[ans]%p;
printf("%lld\n",(ret%p+p)%p);
flag=; break;
}
}
if(flag==) printf("Orz, I cannot find x!\n");
}
}
return ;
}

【Luogu】P2485计算器(快速幂,exgcd和Bsgs模板)的更多相关文章

  1. 【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  2. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  3. BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

    BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...

  4. BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...

  5. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  6. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  7. 2018.08.30 NOIP模拟 kfib(矩阵快速幂+exgcd)

    [输入] 一行两个整数 n P [输出] 从小到大输出可能的 k,若不存在,输出 None [样例输入 1] 5 5 [样例输出] 2 [样例解释] f[0] = 2 f[1] = 2 f[2] = ...

  8. 【luogu P3390 矩阵快速幂】 模板

    题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p  与  B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...

  9. (分治法 快速幂)P1226 【模板】快速幂||取余运算 洛谷

    题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输 ...

随机推荐

  1. 【洛谷3527】[POI2011] MET-Meteors(树状数组+整体二分)

    点此看题面 大致题意: 一颗星球被分为\(M\)份,分别属于\(N\)个国家,有\(K\)场陨石雨,第\(i\)个国家希望收集\(P_i\)颗陨石,问其至少要在第几次陨石雨后才能达到目标. 关于整体二 ...

  2. 【BZOJ3209】花神的数论题(数位DP)

    点此看题面 大致题意: 设\(sum(i)\)表示\(i\)二进制中1的个数,请求出\(\prod_{i=1}^n sum(i)\). 数位\(DP\) 很显然,这是一道数位\(DP\)题.我们可以先 ...

  3. 响应式网站布局要适应的当下主流手机屏幕的各个版本的分辨率有哪些(media query)

    CSS宽有14种: 320.360.375.384.400.414.533.600.768.800.853.1024.1280.1366 CSS高有16种: 360.480.533.568.569.6 ...

  4. 【luogu P3608 [USACO17JAN]Balanced Photo平衡的照片】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3608 乍一看很容易想到O(N^2)的暴力. 对于每个H[i]从i~i-1找L[i]再从i+1~n找R[i], ...

  5. neo4j 安装

    查看 http://ip:7474/browser/

  6. JavaScript方法中this关键字使用注意

    问题来源 本文是基于廖雪峰老师JavaScript课程中的方法一节以及阮一峰老师JavaScript 的 this 原理 所记. 首先,我们了解一下JavaScript中的方法:在一个对象中绑定函数, ...

  7. python笔记-tuple元组的方法

    #!/usr/bin/env python #-*- coding:utf-8 -*- # 创建空元组 tuple1 = () print(tuple) # 创建带有元素的元组 # 元组中的类型可以不 ...

  8. thinkphp 5数据库操作

    1.原生sql $options=Db::table('__MALL_POST__') ->alias('m') ->join('__MALL_CATEGORY_VALUE__ v','m ...

  9. Git add命令

    git add -A和 git add .   git add -u在功能上看似很相近,但还是存在一点差别 git add . :他会监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文 ...

  10. 《鸟哥的Linux私房菜》学习笔记(8)——bash脚本编程之变量

    一.变量命名                                                             1.只能包含字母.数字和下划线,并且不能以数字开头,    2.不 ...