BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

Description

已知一个长度为n的序列a1,a2,...,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j))

Input

第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)

Output

n行,第i行表示对于i,得到的p

Sample Input

6
5
3
2
4
2
4

Sample Output

2
3
5
3
5
4


首先有f[i]=max(a[j]+sqrt(|i-j|))-a[i]

先考虑j<i的情况,然后在考虑j>i的情况。

设j1<j2<i1<i2,j2转移i1比j1转移i1优,j1转移i2比j2转移i2优。

那么上下加一下再展开可以得出这是错的,所以满足决策单调性。

这个题比较良心卡出了我以前决策单调性代码的罢嗝。

就是每次队首的l需要++,否则计算后面的时候会用到Q[l].l,而此时Q[l].l可能已经转移过了。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 500050
typedef double f2;
struct A {
int l,r,p;
}Q[N];
int a[N],n;
f2 f[N];
f2 Y(int j,int i) {
return a[j]+sqrt(i>j?i-j:j-i);
}
int find1(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)<=Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l;
}
int find2(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l-1;
}
int main() {
scanf("%d",&n);
int i,l=0,r=0;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
for(i=1;i<=n;i++) {
Q[l].l++;
while(l<r&&Q[l].l>Q[l].r) l++;
f[i]=max(0.0,Y(Q[l].p,i)-a[i]);
if(l==r||Y(i,n)>Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)>Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find1(Q[r-1],i);
Q[r-1].r=x-1; Q[r++]=(A){x,n,i};
}
}
}
l=r=0;
for(i=n;i>=1;i--) {
Q[l].r--;
while(l<r&&Q[l].l>Q[l].r) l++;
f[i]=max(f[i],Y(Q[l].p,i)-a[i]);
if(l==r||Y(i,1)>Y(Q[r-1].p,1)) {
while(l<r&&Y(i,Q[r-1].r)>Y(Q[r-1].p,Q[r-1].r)) r--;
if(l==r) Q[r++]=(A){1,i,i};
else {
int x=find2(Q[r-1],i);
Q[r-1].l=x+1; Q[r++]=(A){1,x,i};
}
}
}
for(i=1;i<=n;i++) {
printf("%d\n",(int)ceil(f[i]));
}
}

BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性的更多相关文章

  1. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  2. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  3. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  4. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  5. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  6. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  7. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

  8. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  9. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

随机推荐

  1. Dance In Heap(二):一些堆利用的方法(上)

    0×00 前面的话 在前面的文章里我们稍微有点啰嗦的讲解了堆中的一些细节,包括malloc.free的详细过程,以及一些检查保护机制,那在这篇文章里,我们就开始结合这些机制,以64位为例来看一看如何对 ...

  2. Toolbar的使用.md

    1.什么是Toolbar Toolbar是在Android5.0时出现的一个新控件,其目的用于取代Actionbar,它与Actionbar最大的差别就是Toolbar使用更加灵活.自由,而且Tool ...

  3. hihocoder 1032 manachar 求回文串O(n)

    #include <cstdio> #include <iostream> #include <algorithm> #include <queue> ...

  4. 【每日Scrum】第二天(4.23) TD学生助手Sprint2站立会议

    站立会议 组员 昨天 今天 困难 签到 刘铸辉 (组长) 昨天觉得整个界面不适合后期功能扩展,所以进行了整体整改 今天主要看了多事件处理的内容然后改了下界面, 遇到的困难就是正在寻找用户交互性比较好的 ...

  5. make mrproper及mrproper的含义

    Linux下面去编译项目之前,一般常会用make mrproper去先删除之前编译所生成的文件和配置文件,备份文件等,其中,mrproper和distclean,clean之间的区别,Linux内核源 ...

  6. smali函数分析

    一.函数调用 smali中的函数和成员变量也分为两种,分别为 direct 和 virtual 两者的区别 1.direct method 是指private函数 2.virtual method 是 ...

  7. 对JavaBean创建的一点改进

    在看了<Effective Java>Item2中对JavaBean的描述后,再结合Item1和Builder模式,遂想有没有其他方式避免JavaBean创建的线程安全问题呢? 以如下Ja ...

  8. React项目结构

    任何一种语言.框架,在真正上手的时候,多多少少会想想怎么安排项目结构(正所谓磨刀不误砍柴工),React也不例外. google了下,拿下面3篇博客来说道说道. (1) how-to-better-o ...

  9. TXT文本写入数据库

    load data local infile "D:/abc.txt" into table lee; leedabao.txt内容如下,中间用Tab隔开: 2 yuanpeng ...

  10. ORACLE SQL性能优化(全)

    ORACLE SQL性能优化(全) http://wenku.baidu.com/view/b2aaba3887c24028915fc337.html