CodeForces526F:Pudding Monsters (分治)
In this problem you will meet the simplified model of game Pudding Monsters.
An important process in developing any game is creating levels. A game field in Pudding Monsters is an n × n rectangular grid, n of its cells contain monsters and some other cells contain game objects. The gameplay is about moving the monsters around the field. When two monsters are touching each other, they glue together into a single big one (as they are from pudding, remember?).
Statistics showed that the most interesting maps appear if initially each row and each column contains exactly one monster and the rest of map specifics is set up by the correct positioning of the other game objects.
A technique that's widely used to make the development process more efficient is reusing the available resources. For example, if there is a large n × n map, you can choose in it a smaller k × k square part, containing exactly k monsters and suggest it as a simplified version of the original map.
You wonder how many ways there are to choose in the initial map a k × k (1 ≤ k ≤ n) square fragment, containing exactly k pudding monsters. Calculate this number.
Input
The first line contains a single integer n (1 ≤ n ≤ 3 × 105) — the size of the initial field.
Next n lines contain the coordinates of the cells initially containing monsters. The i-th of the next lines contains two numbers ri, ci (1 ≤ ri, ci ≤ n) — the row number and the column number of the cell that initially contains the i-th monster.
It is guaranteed that all ri are distinct numbers and all ci are distinct numbers.
Output
Print the number of distinct square fragments of the original field that can form a new map.
Examples
5
1 1
4 3
3 2
2 4
5 5
10
题意:给定N*N的棋盘,以及N个棋子放置情况,保证每一行,每一列只有一个棋子。问现在有多少个子正方形,满足每一行每一列都有一个棋子。
思路:以x坐标为第一关键字,转化为一维数组,如样例(1,4,2,3,5),然后问题就成了有多少个练习子区间[i,j],满足i-j=max-min,棋子max和min是区间最大和最小值。 显然分治可以搞,问题转化为多个子问题:求跨过Mid的区间,满足i-j=max-min。
如何线性地解决子问题:由于max和min都是单调的,我们枚举i或者j,然后验证另外一个是否在当前子区间区间里,同时满足max和min的关系,累加答案。
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=3e5+;
int mx[maxn],mn[maxn],sum[maxn<<];
int a[maxn],N; ll ans;
void solve(int L,int R)
{
if(L==R){ ans++; return ;}
int Mid=(L+R)/;
solve(L,Mid); solve(Mid+,R);
mx[Mid]=mn[Mid]=a[Mid]; mx[Mid+]=mn[Mid+]=a[Mid+];
for(int i=Mid-;i>=L;i--) mx[i]=max(mx[i+],a[i]);//预处理
for(int i=Mid-;i>=L;i--) mn[i]=min(mn[i+],a[i]);
for(int i=Mid+;i<=R;i++) mx[i]=max(mx[i-],a[i]);
for(int i=Mid+;i<=R;i++) mn[i]=min(mn[i-],a[i]); for(int i=Mid;i>=L;i--){ //都在左测
int j=mx[i]-mn[i]+i;
if(j<=R&&j>Mid&&mx[j]<mx[i]&&mn[j]>mn[i]) ans++;
}
for(int i=Mid+;i<=R;i++){ //都在右侧
int j=i-mx[i]+mn[i];
if(j<=Mid&&j>=L&&mx[j]<mx[i]&&mn[j]>mn[i]) ans++;
}
int j=Mid+,k=Mid+;
for(int i=Mid;i>=L;i--){ //左小右大
while(j<=R&&mn[j]>mn[i]) sum[mx[j]-j+N]++,j++;
while(k< j&&mx[k]<mx[i]) sum[mx[k]-k+N]--,k++;
ans+=(ll)sum[mn[i]-i+N];
}
while(k<j) sum[mx[k]-k+N]--,k++;
j=Mid,k=Mid;
for(int i=Mid+;i<=R;i++){ //左大右小
while(j>=L&&mn[j]>mn[i]) sum[mx[j]+j]++,j--;
while(k> j&&mx[k]<mx[i]) sum[mx[k]+k]--,k--;
ans+=(ll)sum[mn[i]+i];
}
while(k>j) sum[mx[k]+k]--,k--;
}
int main()
{
int x,y,i,j;
scanf("%d",&N);
for(i=;i<=N;i++) scanf("%d%d",&x,&y) ,a[x]=y;
solve(,N);
printf("%lld\n",ans);
return ;
}
CodeForces526F:Pudding Monsters (分治)的更多相关文章
- [Codeforces526F]Pudding Monsters 分治
F. Pudding Monsters time limit per test 2 seconds memory limit per test 256 megabytes In this proble ...
- 【CF526F】Pudding Monsters cdq分治
[CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...
- Codeforces 526F Pudding Monsters - CDQ分治 - 桶排序
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
- CF526F Pudding Monsters
CF526F Pudding Monsters 题目大意:给出一个\(n* n\)的棋盘,其中有\(n\)个格子包含棋子. 每行每列恰有一个棋子. 求\(k*k\)的恰好包含\(k\)枚棋子的子矩形个 ...
- 「CF526F」 Pudding Monsters
CF526F Pudding Monsters 传送门 模型转换:对于一个 \(n\times n\) 的棋盘,若每行每列仅有一个棋子,令 \(a_x=y\),则 \(a\) 为一个排列. 转换成排列 ...
- Pudding Monsters CodeForces - 526F (分治, 双指针)
大意: n*n棋盘, n个点有怪兽, 求有多少边长为k的正方形内恰好有k只怪兽, 输出k=1,...,n时的答案和. 等价于给定n排列, 对于任意一个长为$k$的区间, 若最大值最小值的差恰好为k, ...
- [Codeforce526F]:Pudding Monsters(分治)
题目传送门 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试——魔界入侵.唯一一个神一般存在的Administrator被消灭了,靠原本的 ...
- 奇袭 CodeForces 526F Pudding Monsters 题解
考场上没有认真审题,没有看到该题目的特殊之处: 保证每一行和每一列都恰有一只军队,即每一个Xi和每一个Yi都是不一样 的. 于是无论如何也想不到复杂度小于$O(n^3)$的算法, 只好打一个二维前缀和 ...
- 【CF526F】Pudding Monsters
题意: 给你一个排列pi,问你有对少个区间的值域段是连续的. n≤3e5 题解: bzoj3745
随机推荐
- ※版本管理※=>☆SVN工具=>※解决地域麻烦※№→搭建自己的网络SVN (SourceForge 免费) [转]
源文 http://blog.csdn.net/xiaoting451292510/article/details/8562570 分类: 版本管理 2013-02-01 14:44 26057人阅读 ...
- PS 基础知识 什么是Adobe Bridge
Adobe Bridge是什么 悬赏分:0 - 解决时间:2007-2-23 10:50 下载的PS中附带了Adobe Bridge,可我不知道它是干什么用的?如何使用??? 谢谢! 提问者: Car ...
- vue-class-component 以class的模式写vue组件
vue英文官网推荐了一个叫vue-class-component的包,可以以class的模式写vue组件.vue-class-component(以下简称Component)带来了很多便利: 1.me ...
- yum安装zabbix监控
公司的服务器由于没有监控软件监控,最感觉不安全,就开始研究zabbix的安装,最后找到一个最简单的安装方法,在这里记录一下,方便以后的查阅 1.安装zabbix官方的软件配置仓库 rpm -ivh h ...
- hdparm - get/set SATA/IDE device parameters
hdparm(8) - Linux man page Name hdparm - get/set SATA/IDE device parameters Synopsis hdparm [ flags ...
- UUID随机字符串
public static void main(String[] args){ System.out.println(UUID.randomUUID().toString()); } //输出:698 ...
- NFC 标签类型
NFC 标签类型 Type 1:Type 1 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. T ...
- mongoDB之监控工具mongostat及其参数的具体含义
mongostat是mongdb自带的状态检测工具,在命令行下使用.它会间隔固定时间获取mongodb的当前运行状态,并输出.如果你发现数据库突然变慢或者有其他问题的话,你第一手的操作就考虑采用mon ...
- public,protected,private,static,final的区别(转载)
1.类 (1)在java中有public.protected.private三种显示的修饰符用于控制可见性,package不是显示的修饰符,它是隐含的,即如果在类.变量等前没加显示的可见性修饰符,那它 ...
- spring 监听器简介
在java web项目中我们通常会有这样的需求:当项目启动时执行一些初始化操作,例如从数据库加载全局配置文件等,通常情况下我们会用javaee规范中的Listener去实现 常用的监听器有spring ...