题意:

  有n个点,编号为1~n。有的点颜色是黑色,有的点颜色是白色,有的点的颜色待涂。你还可以连一些边,但这些边一定是从小编号连到大编号的点。

  对于一个确定的图,我们去统计有多少条路径满足“该路径经过的所有点的颜色都是黑白相间的”,如果这种路径总数的奇偶性为p(p是输入的,p=0或1),那么该图就被称为好图

  我们需要统计所有图中,好图的个数。答案对1e9+7取模。

分析:

  我们先考虑对于一个给定的图,如何求出这种路径的总数

  dp[i][0]表示点i是黑点,以点i为终点的所有路径的条数;dp[i][1]表示点i是白点,以点i为终点的所有路径的条数

  那么只需要从前往后dp一下就能求出结果了

  注意我们只关系奇偶性,所以是在模2意义下,那么dp值只有0和1两种取值

  那么有一种显然的dp套dp的思路:f[i][S]表示已经做完了前i个点,前i个点的dp值是S情况下的图的个数

  但是最多有50个点,状态是2^50,这样不能解决

  仔细分析后发现,我们关心的并不是前i-1个点的具体dp值,我们关心的只是dp[j][0]=0、dp[j][0]=1、dp[j][1]=0、dp[j][1]=1的状态的分别的数目!

  于是dp[i][ew][ow][eb][ob]表示前i个点,有ew个even-white点(即以某白点为终点的路径总数是偶数,后面同理),有ow个odd-white点,有eb个even-black点,有ob个odd-black点的情况下,图的个数

  那么最后答案就是满足(ow+ob)%2==p的状态的图的个数的总和

  这样复杂度是O(n^5),我们考虑优化一下

  首先很明显,ob=i-ew-ow-eb,于是可以省掉一个维的状态,复杂度就变成O(n^4)了,可以通过

  再进一步,我们发现偶点是随便连的,于是我们只需要记状态为dp[i][ow][ob]就行了,时间复杂度O(n^3)

 #include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=1e9+;
int dp[maxn+][maxn+][maxn+][maxn+];
int c[maxn+];
int n,p;
int pw[maxn+];
void inc(int&a,int b)
{
a=(a+b)%mod;
}
int main()
{
scanf("%d%d",&n,&p);
for(int i=;i<=n;++i) scanf("%d",&c[i]);
pw[]=;
for(int i=;i<=maxn;++i) pw[i]=pw[i-]*2LL%mod;
if(c[]==||c[]==-) dp[][][][]=;
if(c[]==||c[]==-) dp[][][][]=;
for(int i=;i<=n;++i)
for(int ew=;ew<=i;++ew)
for(int ow=;ow<=i;++ow)
for(int eb=;eb<=i;++eb)
{
if(ow+ew+eb>i) continue;
int ob=i-ew-ow-eb;
if(c[i]==||c[i]==-)
{
if(ow+ew!=)
{
long long s=;
if(ow>=)
if(ob==) s=dp[i-][ew][ow-][eb];
else s=1LL*pw[ob-]*dp[i-][ew][ow-][eb]%mod;
if(ew>=)
if(ob>=) s+=1LL*pw[ob-]*dp[i-][ew-][ow][eb]%mod;
s%=mod;
s=s*pw[eb+ew+ow-]%mod;
inc(dp[i][ew][ow][eb],(int)s);
}
}
if(c[i]==||c[i]==-)
{
if(ob+eb!=){
long long s=;
if(ob>=)
if(ow==) s=dp[i-][ew][ow][eb];
else s=1LL*pw[ow-]*dp[i-][ew][ow][eb]%mod;
if(eb>=)
if(ow>=) s+=1LL*pw[ow-]*dp[i-][ew][ow][eb-]%mod;
s%=mod;
s=s*pw[eb+ob+ew-]%mod;
inc(dp[i][ew][ow][eb],(int)s);
}
}
}
int ans=;
for(int ew=;ew<=n;++ew)
for(int ow=;ow<=n;++ow)
for(int eb=;eb<=n;++eb)
if(ew+ow+eb<=n)
if((ow+n-ew-ow-eb)%==p)
inc(ans,dp[n][ew][ow][eb]);
printf("%d\n",ans);
return ;
}

codeforces 979E(dp套dp)的更多相关文章

  1. Codeforces 372B Counting Rectangles is Fun:dp套dp

    题目链接:http://codeforces.com/problemset/problem/372/B 题意: 给你一个n*m的01矩阵(1 <= n,m <= 40). 然后有t组询问( ...

  2. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  3. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  4. luogu 4158 粉刷匠 dp套dp

    dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...

  5. DP套DP

    DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...

  6. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  7. dp 套 dp扯谈

    1.[扯谈概念] \(dp\) 套 \(dp\) 其实也就是 \(dp\) . 这里就定义下面两个概念: 内层 \(dp\) 表示的是被套在里面的那个 \(dp\) 外层 \(dp\) 表示的是最外面 ...

  8. P4590-[TJOI2018]游园会【dp套dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P4590 题目大意 给出一个长度为\(m\)的字符串\(s\). 对于每个\(k\in[0,m]\)求有多少个长度为 ...

  9. 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)

    洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...

随机推荐

  1. phpmyadmin提示The mbstring extension is missing的解决方法

    解决办法:安装php-mbstring yum install php-mbstring

  2. Java装饰者模式(Decorator)

    一.定义 装饰模式的设计理念主要是以对客户端透明的方式动态扩展对象的功能,是继承关系的一个替代(继承会产生大量的子类,而且代码有冗余).装饰模式可以在不创造更多子类的情况下,将对象的功能加以扩展.装饰 ...

  3. Linux学习-灾难复原的考虑

    硬件损毁,且具有完整备份的数据时 由于是硬件损毁,所以我们不需要考虑系统软件的不稳定问题,所以可以直接将完整的系统复原回去 即可. 由于软件的问题产生的被攻破资安事件 由于系统的损毁是因为被攻击,此时 ...

  4. 栈的push、pop序列 【微软面试100题 第二十九题】

    题目要求: 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1.2.3.4.5是某栈的压栈序列,序列4.5.3.2.1是该压栈 ...

  5. __block 和__weak

    1,在MRC 时代,__block 修饰,可以避免循环引用:ARC时代,__block 修饰,同样会引起循环引用问题: 2,__block不管是ARC还是MRC模式下都可以使用,可以修饰对象,还可以修 ...

  6. ubuntu linux下各种格式软件包的安装卸载

    http://www.cnblogs.com/mo-beifeng/archive/2011/08/14/2137954.html

  7. 理解Linux虚拟文件系统VFS

    当前,除了linux标准的文件系统Ext2/Ext3/Ext4外,还有很多种文件系统,比如reiserfs, xfs, Windows的vfat NTFS,网络文件系统nfs 以及flash 文件系统 ...

  8. [转]廖雪峰:datetime用法

    datetime是Python处理日期和时间的标准库. 获取当前日期和时间 我们先看如何获取当前日期和时间: >>> from datetime import datetime &g ...

  9. 九度oj 1006

    题目1006:ZOJ问题 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:20252 解决:3544 题目描述:                        对给定的字符串(只包含'z', ...

  10. 第002弹:Java 中的值传递和引用传递

    在 Java 的代码开发过程中,为了尽可能提高方法的复用性,明确方法的作用,同时防止一个方法内部过于臃肿的问题,往往会创建许多方法,那么不可避免地会涉及到参数传递的问题.通常来说,我们将 Java 中 ...