codeforces 979E(dp套dp)
题意:
有n个点,编号为1~n。有的点颜色是黑色,有的点颜色是白色,有的点的颜色待涂。你还可以连一些边,但这些边一定是从小编号连到大编号的点。
对于一个确定的图,我们去统计有多少条路径满足“该路径经过的所有点的颜色都是黑白相间的”,如果这种路径总数的奇偶性为p(p是输入的,p=0或1),那么该图就被称为好图
我们需要统计所有图中,好图的个数。答案对1e9+7取模。
分析:
我们先考虑对于一个给定的图,如何求出这种路径的总数
dp[i][0]表示点i是黑点,以点i为终点的所有路径的条数;dp[i][1]表示点i是白点,以点i为终点的所有路径的条数
那么只需要从前往后dp一下就能求出结果了
注意我们只关系奇偶性,所以是在模2意义下,那么dp值只有0和1两种取值
那么有一种显然的dp套dp的思路:f[i][S]表示已经做完了前i个点,前i个点的dp值是S情况下的图的个数
但是最多有50个点,状态是2^50,这样不能解决
仔细分析后发现,我们关心的并不是前i-1个点的具体dp值,我们关心的只是dp[j][0]=0、dp[j][0]=1、dp[j][1]=0、dp[j][1]=1的状态的分别的数目!
于是dp[i][ew][ow][eb][ob]表示前i个点,有ew个even-white点(即以某白点为终点的路径总数是偶数,后面同理),有ow个odd-white点,有eb个even-black点,有ob个odd-black点的情况下,图的个数
那么最后答案就是满足(ow+ob)%2==p的状态的图的个数的总和
这样复杂度是O(n^5),我们考虑优化一下
首先很明显,ob=i-ew-ow-eb,于是可以省掉一个维的状态,复杂度就变成O(n^4)了,可以通过
再进一步,我们发现偶点是随便连的,于是我们只需要记状态为dp[i][ow][ob]就行了,时间复杂度O(n^3)
#include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=1e9+;
int dp[maxn+][maxn+][maxn+][maxn+];
int c[maxn+];
int n,p;
int pw[maxn+];
void inc(int&a,int b)
{
a=(a+b)%mod;
}
int main()
{
scanf("%d%d",&n,&p);
for(int i=;i<=n;++i) scanf("%d",&c[i]);
pw[]=;
for(int i=;i<=maxn;++i) pw[i]=pw[i-]*2LL%mod;
if(c[]==||c[]==-) dp[][][][]=;
if(c[]==||c[]==-) dp[][][][]=;
for(int i=;i<=n;++i)
for(int ew=;ew<=i;++ew)
for(int ow=;ow<=i;++ow)
for(int eb=;eb<=i;++eb)
{
if(ow+ew+eb>i) continue;
int ob=i-ew-ow-eb;
if(c[i]==||c[i]==-)
{
if(ow+ew!=)
{
long long s=;
if(ow>=)
if(ob==) s=dp[i-][ew][ow-][eb];
else s=1LL*pw[ob-]*dp[i-][ew][ow-][eb]%mod;
if(ew>=)
if(ob>=) s+=1LL*pw[ob-]*dp[i-][ew-][ow][eb]%mod;
s%=mod;
s=s*pw[eb+ew+ow-]%mod;
inc(dp[i][ew][ow][eb],(int)s);
}
}
if(c[i]==||c[i]==-)
{
if(ob+eb!=){
long long s=;
if(ob>=)
if(ow==) s=dp[i-][ew][ow][eb];
else s=1LL*pw[ow-]*dp[i-][ew][ow][eb]%mod;
if(eb>=)
if(ow>=) s+=1LL*pw[ow-]*dp[i-][ew][ow][eb-]%mod;
s%=mod;
s=s*pw[eb+ob+ew-]%mod;
inc(dp[i][ew][ow][eb],(int)s);
}
}
}
int ans=;
for(int ew=;ew<=n;++ew)
for(int ow=;ow<=n;++ow)
for(int eb=;eb<=n;++eb)
if(ew+ow+eb<=n)
if((ow+n-ew-ow-eb)%==p)
inc(ans,dp[n][ew][ow][eb]);
printf("%d\n",ans);
return ;
}
codeforces 979E(dp套dp)的更多相关文章
- Codeforces 372B Counting Rectangles is Fun:dp套dp
题目链接:http://codeforces.com/problemset/problem/372/B 题意: 给你一个n*m的01矩阵(1 <= n,m <= 40). 然后有t组询问( ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- luogu 4158 粉刷匠 dp套dp
dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
- dp 套 dp扯谈
1.[扯谈概念] \(dp\) 套 \(dp\) 其实也就是 \(dp\) . 这里就定义下面两个概念: 内层 \(dp\) 表示的是被套在里面的那个 \(dp\) 外层 \(dp\) 表示的是最外面 ...
- P4590-[TJOI2018]游园会【dp套dp】
正题 题目链接:https://www.luogu.com.cn/problem/P4590 题目大意 给出一个长度为\(m\)的字符串\(s\). 对于每个\(k\in[0,m]\)求有多少个长度为 ...
- 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)
洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\).我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...
随机推荐
- ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)
题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...
- IIS发布网站Microsoft JET Database Engine 错误 '80004005'的解决办法,基于Access数据库
在网站发布后,访问网站会有80004005的错误提示. 项目环境 项目基于Access数据库,server2012,文件系统为NTFS格式. 错误信息 Microsoft JETDatabase En ...
- PAT Basic 1080
1080 MOOC期终成绩 对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的在线编程作业分 ...
- LayaAir环境TypeScript
1.1 Node.js下载 TypeScript开发HTML5需要Node.js环境,如果没有安装过的,请前往官方下载(建议LTS版本),如图1,URL地址为:https://nodejs.org ...
- 下拉列表 Spinner
在Web开发中,HTML提供了下拉列表的实现,就是使用<select>元素实现一个下拉列表,在其中每个下拉列表项使用<option>表示即可.这是在Web开发中一个必不可少的交 ...
- 00018_流程控制语句switch
1.选择结构switch switch 条件语句也是一种很常用的选择语句,它和if条件语句不同,它只能针对某个表达式的值作出判断,从而决定程序执行哪一段代码. 2.switch语句的语法格式 swit ...
- php-数据库连接类
<?php class DB{ var $host; var $user; var $pwd; var $dbname; var $conn; function DB($host,$user,$ ...
- 常用软件URL
1.MSDN:https://msdn.itellyou.cn/ 2.软碟通(UltraISO)http://rj.baidu.com/soft/detail/11522.html?ald Ultra ...
- SCOI 2010 滑雪
题目描述 a180285非常喜欢滑雪.他来到一座雪山,这里分布着 MM 条供滑行的轨道和 NN 个轨道之间的交点(同时也是景点),而且每个景点都有一编号 ii ( 1 \le i \le N1≤i≤N ...
- 算法理论——Linear SVM
问题引入 下面的三个超平面都起到分类的效果,哪个最好? 答案显然是第三个.为什么? 直觉上,如果现在我们有个测试点,非常靠近右下角的那个红叉叉,也就是说这个点的特征与那个红叉叉非常接近,这时候,我们希 ...