n的规模可以状压,f[x][y][S]表示x行,y列,S集合的巧克力能否被切割。

预处理出每个状态S对应的面积和sum(S),对于一个合法的状态一定满足x*y=sum(S),实际上只有两个变量是独立的。

而且有x,y等效与y,x,那么这里取max(x,y)。

转移的时候枚举S的非空真子集,横着切或者竖着切。

边间是到达一个合法的x,y,S,其中S中只有一个元素。

复杂度O(x*3^n)

#include<bits/stdc++.h>
using namespace std; const int Mx = ,Mxs = <<;
bool meo[Mx][Mxs];
int sumA[Mxs];
int vis[Mx][Mxs], clk;//避免memset
int a[],n;
int ss[]; bool dfs(int x,int y,int S)
{
if(x<y) swap(x,y);
if(vis[x][S] == clk) return meo[x][S];
vis[x][S] = clk;
if(sumA[S] != x*y) return meo[x][S] = false;//这里其实可以dfs外就判断,之后转移一定保证合法
if(*lower_bound(ss,ss+,S)== S) return meo[x][S] = true;
for(int S0 = S&(S-); S0 ; S0 = (S0-)&S){//忽略不在S中的1
if(sumA[S0]%x == ){
int y0 = sumA[S0]/x;
if(dfs(x,y0,S0) && dfs(x,y-y0,S^S0)) return meo[x][S] = true;
}
if(sumA[S0]%y == ){
int x0 = sumA[S0]/y;
if(dfs(x0,y,S0) && dfs(x-x0,y,S^S0)) return meo[x][S] = true;
}
}
return meo[x][S] = false;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
for(int i = ; i < ; i++){
ss[i] = <<i;
}
while(scanf("%d",&n),n){
int x,y; scanf("%d%d",&x,&y);
for(int i = ; i < n; i++) scanf("%d",a+i);
int mxs = (<<n);
for(int S = ; S < mxs; S++){
sumA[S] = ;
for(int i = ; i < n; i++){
if(S>>i&) sumA[S] += a[i];
}
}
clk++;
printf("Case %d: %s\n",clk,dfs(x,y,mxs-)?"Yes":"No");
}
return ;
}

UVALive 4794 Sharing Chocolate(状压,枚举子集)的更多相关文章

  1. 【暑假】[深入动态规划]UVAlive 4794 Sharing Chocolate

    UVAlive 4794 Sharing Chocolate 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=12055 ...

  2. UVALive 4794 Sharing Chocolate

    Sharing Chocolate Chocolate in its many forms is enjoyed by millions of people around the world ever ...

  3. UVALive 4794 Sharing Chocolate DP

    这道题目的DP思想挺先进的,用状态DP来表示各个子巧克力块.原本是要 dp(S,x,y),S代表状态,x,y为边长,由于y可以用面积/x表示出来,就压缩到了只有两个变量,在转移过程也是很巧妙,枚举S的 ...

  4. CF1556F Sports Betting (状压枚举子集DP)

    F 对于一张比赛图,经过缩点,会得到dag,且它一定是transitive的,因此我们能直接把比赛图缩成一个有向链.链头作为一个强连通分量,里面的所有点都是胜利的 定义F(win)表示win集合作为赢 ...

  5. [POJ1681]Painter's Problem(高斯消元,异或方程组,状压枚举)

    题目链接:http://poj.org/problem?id=1681 题意:还是翻格子的题,但是这里有可能出现自由变元,这时候枚举一下就行..(其实这题直接状压枚举就行) /* ━━━━━┒ギリギリ ...

  6. HDU2489【状压枚举】

    题意: 给你n个点的图,然后让你在图里挑m个点,达到sumedge/sumnode最小 思路: 由于数据范围小,状压枚举符合m个点的状态,我是用vactor存了结点位置,也记录了结点的sum值,然后跑 ...

  7. POJ3734【状压枚举】

    题意: 给你两个01矩阵,去掉矩阵B的某些行和某些列,问处理后的矩阵B能否变成矩阵A: 思路: 数据较小,状压枚举B矩阵列的数量=A矩阵列的数量时的状态,然后搞定了列,贪心判断B矩阵的行就好了: #i ...

  8. HDU6321 Dynamic Graph Matching【状压DP 子集枚举】

    HDU6321 Dynamic Graph Matching 题意: 给出\(N\)个点,一开始没有边,然后有\(M\)次操作,每次操作加一条无向边或者删一条已经存在的边,问每次操作后图中恰好匹配\( ...

  9. UVaLive 6625 Diagrams & Tableaux (状压DP 或者 DFS暴力)

    题意:给一个的格子图,有 n 行单元格,每行有a[i]个格子,要求往格子中填1~m的数字,要求每个数字大于等于左边的数字,大于上边的数字,问有多少种填充方法. 析:感觉像个DP,但是不会啊...就想暴 ...

随机推荐

  1. Python 在windows上安装BeautifulSoup和request以及小案例

    Python以及PyCharm安装成功后,操作如下: 此时,代码import requests不报错了. 那么,Python 在windows上安装BeautifulSoup,怎么操作呢? 1. 打开 ...

  2. 附近wifi都是你的

    今天给大家介绍deauth攻击. 最终效果:附近你指定的任何wifi,别人都无法连接,即便连接上的也会断掉. 由于我在 “世界虽大,但没有破不了的wifi”  这篇文章中写的很详细,所以我在这里就步详 ...

  3. centos 安装webbench 用于web压力测试

    1.WebBench安装: yum install ctags(先安装依赖库) mkdir /usr/local/man (创建一个目录不然会报错) wget http://home.tiscali. ...

  4. 洛谷P2016 战略游戏

    P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...

  5. jzoj6008. 【THUWC2019模拟2019.1.18】Sequence (矩阵加速)

    题面 茉优最近研究发现,一个人的想愿能力可以认为是字符串S的一个子串S[l,r],而连接值可以认为是这个子串的本质不同子序列个数.现在她想验证她的结论是否正确,于是她给了你Q个询问,希望你帮她来计算, ...

  6. IOS UILabel的一些使用小技巧

    1. 你在iOS6的需要NSLineBreakByWordWrapping 为了您的代码试试这个: NSString *string = @"bla"; CGSize s = [s ...

  7. vue中axios开启cookies

  8. 矩形面积并-扫描线 线段树 离散化 模板-poj1151 hdu1542

    今天刚看到这个模板我是懵逼的,这个线段树既没有建树,也没有查询,只有一个update,而且区间成段更新也没有lazy标记....研究了一下午,我突然我发现我以前根本不懂扫描线,之所以没有lazy标记, ...

  9. Middleware-请求管道的构成

    Middleware-请求管道的构成 在 ASP.NET 中,我们知道,它有一个面向切面的请求管道,有19个主要的事件构成,能够让我们进行灵活的扩展.通常是在 web.config 中通过注册 Htt ...

  10. (转)COBBLER无人值守安装

    COBBLER无人值守安装 说在最前面的话 在看Cobbler之前请大家先看一下Kickstart无人值守安装,了解一下Cobbler的实现原理.但是Cobbler是独立的,不需要先安装Kicksta ...