4585: [Apio2016]烟火表演

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 115  Solved: 79
[Submit][Status][Discuss]

Description

烟花表演是最引人注目的节日活动之一。在表演中,所有的烟花必须同时爆炸。为了确保安
全,烟花被安置在远离开关的位置上,通过一些导火索与开关相连。导火索的连接方式形成
一棵树,烟花是树叶,如[图1]所示。火花从开关出发,沿导火索移动。每当火花抵达一个分
叉点时,它会扩散到与之相连的所有导火索,继续燃烧。导火索燃烧的速度是一个固定常
数。[图1]展示了六枚烟花{E1,E2...E6 }的连线布局,以及每根导火索的长度。图中还标
注了当在时刻 从开关点燃火花时,每一发烟花的爆炸时间。
Hyunmin为烟花表演设计了导火索的连线布局。不幸的是,在他设计的布局中,烟花不一定
同时爆炸。我们希望修改一些导火索的长度,让所有烟花在同一时刻爆炸。例如,为了让[图
1]中的所有烟花在时刻 13爆炸,我们可以像[图2]中左边那样调整导火索长度。类似地,为
了让[图1]中的所有烟花在时刻 14爆炸,我们可以像[图2]中右边那样调整长度。
修改导火索长度的代价等于修改前后长度之差的绝对值。例如,将[图1]中布局修改为[图2]
左边布局的总代价为6 ,而将[图1]中布局修改为[图2]右边布局的总代价为 5.
导火索的长度可以被减为0 ,同时保持连通性不变。
给定一个导火索的连线布局,你需要编写一个程序,去调整导火索长度,让所有的烟花在同
一时刻爆炸,并使得代价最小。
 

Input

所有的输入均为正整数。令 N代表分叉点的数量, M代表烟花的数量。分叉点从1 到N 编

号,编号为1 的分叉点是开关。烟花从N+1 到 N+M编号。1<=N+M<=300,000
输入格式如下:
N M
P2 C2
P3 C3
...
Pn Cn
PN+1 CN+1
...
PN+m CN+M
其中Pi 满足 1<=Pi<i,代表和分叉点或烟花i 相连的分叉点。 Ci代表连接它们的导火索长
度( 1<=Ci<=10^9)。除开关外,每个分叉点和多于1 条导火索相连,而每发烟花恰好与 1条导
火索相连。

Output

输出调整导火索长度,让所有烟花同时爆炸,所需要的最小代价

Sample Input

4 6
1 5
2 5
2 8
3 3
3 2
3 3
2 9
4 4
4 3

Sample Output

5
 
这个题解很妙啊....
估计我扯不清....干脆就放个有点注释的代码吧。
#include<cstdio>

typedef long long ll;
const int len(),N();
int n,m,fa[len+]; ll sum,C[len+];
int max(int a,int b){return a>b?a:b;}
template<class T>void read(T &x)
{
x=;bool f=;char c=getchar();
while((c<''||c>'')&&c!='-')c=getchar();if(c=='-')f=,c=getchar();
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
x=f?-x:x;
}
struct Leftist{ll val;int dis,nx[];}Lheap[N<<];int tot,root[N],son[N];
void swap(int &x,int &y){if(x==y)return;x^=y;y^=x;x^=y;}
int merge(int x,int y)
{
if(!x||!y)return x|y;
if(Lheap[x].val<Lheap[y].val)swap(x,y);
Lheap[x].nx[]=merge(Lheap[x].nx[],y);
if(Lheap[Lheap[x].nx[]].dis<Lheap[Lheap[x].nx[]].dis)swap(Lheap[x].nx[],Lheap[x].nx[]);
Lheap[x].dis=Lheap[Lheap[x].nx[]].dis+;
return x;
}
//int slope(int x){return son[x]-Lheap[root[x]].size+1;}//返回x所在堆顶元素的斜率,好像错了
void pop(int x)
{
if(!x)return;
root[x]=merge(Lheap[root[x]].nx[],Lheap[root[x]].nx[]);
}
void deal(int x,int y,int w)//处理x的儿子y,其边长w
{
while(--son[y])pop(y);
//等价于:while(slope(y)>0&&Lheap[root[y]].size)pop(y);
//有son[y]个斜率大于等于0,最后一个等于0
ll R=Lheap[root[y]].val; pop(y);
ll L=Lheap[root[y]].val; pop(y);
Lheap[++tot]=(Leftist){L+w,,,};
root[y]=merge(root[y],tot);
Lheap[++tot]=(Leftist){R+w,,,};
root[y]=merge(root[y],tot);
root[x]=merge(root[x],root[y]);
}
int main()
{
// freopen("C.in","r",stdin);
read(n),read(m);
for(int i=;i<=n+m;i++) read(fa[i]),read(C[i]),sum+=C[i];
// fprintf(stderr,"1\n");
for(int i=n+m;i>=;i--)
{
if(i>n)
{
Lheap[++tot]=(Leftist){C[i],,,};
root[fa[i]]=merge(root[fa[i]],tot);
Lheap[++tot]=(Leftist){C[i],,,};
root[fa[i]]=merge(root[fa[i]],tot);//L=R
}else deal(fa[i],i,C[i]);
son[fa[i]]++;
// fprintf(stderr,"%d \n",i);
}
while(son[]--)pop();//等于0没贡献
int tp=;
for(tp=;root[];tp++)
C[tp]=Lheap[root[]].val,pop();
for(int i=tp-;i>=;i--)//不好算初始斜率,但知道k(i+1)=k(i)+1,(C[i]-C[i+1])*k(i)+(C[i-1]-C[i])*k(i+1)....
//C(tp)不算,C(tp)即最左边的拐点是按道理是0,但是因为上面是没有平移,只有相对间距,所以就忽略C(tp)。
sum-=C[i];
printf("%lld\n",sum);
return ;
}

UOJ #205/BZOJ 4585 【APIO2016】Fireworks 可并堆+凸包优化Dp的更多相关文章

  1. bzoj 4585: [Apio2016]烟火表演【左偏树】

    参考:https://blog.csdn.net/wxh010910/article/details/55806735 以下课件,可并堆部分写的左偏树 #include<iostream> ...

  2. UOJ#7. 【NOI2014】购票 | 线段树 凸包优化DP

    题目链接 UOJ #7 题解 首先这一定是DP!可以写出: \[f[i] = \min_{ancestor\ j} \{f[j] + (d[j] - d[i]) * p[i] + q[i]\}\] 其 ...

  3. CF372C Watching Fireworks is Fun(单调队列优化DP)

    A festival will be held in a town's main street. There are n sections in the main street. The sectio ...

  4. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  6. BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]

    传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...

  7. bzoj 2131 : 免费的馅饼 (树状数组优化dp)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2131 思路: 题目给出了每个馅饼的下落时间t,和位置p,以及价值v,我们可以得到如下状态 ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  9. BZOJ 3963 HDU3842 [WF2011]MachineWorks cdq分治 斜率优化 dp

    http://acm.hdu.edu.cn/showproblem.php?pid=3842 写的check函数里写的<但是应该是<=,调了一下午,我是个zz. 就是普通的斜率优化因为有两 ...

随机推荐

  1. 8. php回调后门

    中国菜刀下载,基于原版中国菜刀优化版20160309. 下载地址: http://pan.baidu.com/s/1jHoJxHW China chopper http://pan.baidu.com ...

  2. Find First and Last Position of Element in Sorted Array

    问题:给定一个有序数组和一个目标值,输出目标值在数组中的起始位置和终止位置,如果目标值不在数组中,则输出[-1,-1] 示例: 输入:nums = [1,2,3,5,5,7] target = 5 输 ...

  3. 「GXOI / GZOI2019」逼死强迫症——斐波那契+矩阵快速幂

    题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \t ...

  4. argparse 在深度学习中的应用

    argparse 介绍 argparse模块主要用来为脚本传递命令参数功能,使他们更加灵活. 代码: parser = argparse.ArgumentParser() #建立解析器,必须写 par ...

  5. java基础第十篇之异常

    1.1接口概念 类:具有相同属性和功能的事物集合 接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”. 接口只描述所应该具备的方法,并没有具体实现,具体的实现由接口的实现类(相当于 ...

  6. iphone状态栏,导航栏,标签栏高度一览表

    iphone状态栏,导航栏,标签栏高度一览表   设备分辨率 状态栏高度 导航栏高度 标签栏高度 iPhone6 plus  1242×2208 px 60px  132px  147px iPhon ...

  7. c# json字符串转数组

    JArray jo = (JArray)JsonConvert.DeserializeObject("这里是json字符串");

  8. 线程池ThreadPoolExecutor的学习

    我们知道,ExecutorService是一个抽象出线程池的一个接口,然后我们在使用线程池的时候,用的是Executors工具类中的一系列newCachedThreadPool() 等类似的方法,这些 ...

  9. 使用命令行创建Android工程报错:"Target id is not valid. Use 'android.bat list targets' to get the target ids"

    D:\adt\sdk>cd tools D:\adt\sdk\tools> D:\adt\sdk\tools>android list targets Available Andro ...

  10. SLF4J user manual 专题

    System Out and Err Redirected to SLF4J The sysout-over-slf4j module allows a user to redirect all ca ...