此题最难处理的操作就是将一个单点改变集合,而普通的并查集是不支持这种操作的。

当结点p是叶子结点的时候,直接pa[p] = root(q)是可以的,

p没有子结点,这个操作对其它结点不会造成任何影响,

而当p是父结点的时候这种操作会破坏子节点的路径,因此必须保留原来的路径。

我们希望pa[p] = root(q)的同时又保留原来的路径,那么只需要在点上做一个标记,

如果这个点被标记,就沿着新的路径寻找。

此时在修改操作的时候这个点一定是叶子结点,所以可以直接pa[p] = root(q),

而原来的点则变成一个虚点用来保留了原来的路径。

改变集合的操作以及查询都只涉及到单点,这个标记只影响这个点,在二次以及以上的寻找还是要按照原来的路径。

#include<bits/stdc++.h>
using namespace std; const int maxn = 1e5+;
int fa[maxn],fa2[maxn],cnt[maxn],sum[maxn];
bool fg[maxn];
int Find(int x,bool d) {
if(fg[x]&&d) return Find(fa2[x],false);
return x==fa[x]?x:fa[x]=Find(fa[x],false);
}
int main()
{
//freopen("in.txt","r",stdin);
int n,m;
while(~scanf("%d%d",&n,&m)){
for(int i = ; i <= n; i++) fa[i]=i,fg[i]=false,cnt[i]=,sum[i]=i;
while(m--){
int op,p,q; scanf("%d%d",&op,&p);
if(op!=){
scanf("%d",&q);
int x = Find(p,true), y = Find(q,true);
if(op == ){
if(x!=y){
cnt[y] += cnt[x];
sum[y] += sum[x];
fa[x] = y;
}
}else {
if(x!=y){
cnt[x]--,sum[x]-=p;
cnt[y]++,sum[y]+=p;
fg[p] = true;
fa2[p] = y;
}
}
}else {
int x = Find(p,true);
printf("%d %d\n",cnt[x],sum[x]);
}
}
}
return ;
}

UVA 11987 Almost Union-Find (单点修改的并查集)的更多相关文章

  1. UVA - 11987 Almost Union-Find(带删除的并查集)

    I hope you know the beautiful Union-Find structure. In this problem, you’re to implement something s ...

  2. Uva 10596 - Morning Walk 欧拉回路基础水题 并查集实现

    题目给出图,要求判断不能一遍走完所有边,也就是无向图,题目分类是分欧拉回路,但其实只要判断度数就行了. 一开始以为只要判断度数就可以了,交了一发WA了.听别人说要先判断是否是联通图,于是用并查集并一起 ...

  3. Mutual Training for Wannafly Union #6 E - Summer Trip(并查集)

    题目链接:http://www.spoj.com/problems/IAPCR2F/en/ 题目大意: 给m个数字代表的大小,之后n组数据,两两关联,关联后的所有数字为一组,从小到大输出组数以及对应的 ...

  4. uva live 7638 Number of Connected Components (并查集)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  5. UVA 11987 Almost Union-Find 并查集单点修改

                                     Almost Union-Find I hope you know the beautiful Union-Find structur ...

  6. UVA - 11987 Almost Union-Find[并查集 删除]

    UVA - 11987 Almost Union-Find I hope you know the beautiful Union-Find structure. In this problem, y ...

  7. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  8. 线段树:Segment Tree(单点修改/区间修改模板) C++

    线段树是非常有效的数据结构,可以快速的维护单点修改,区域修改,查询最大值,最小值等功能. 同时,它也很重要.如果有一天比赛,你卡在了一道线段树模板题目上,这就真的尴尬了.不过,随着时代的进步,题目也越 ...

  9. UVA 11987 - Almost Union-Find(并查集)

    UVA 11987 - Almost Union-Find 题目链接 题意:给定一些集合,操作1是合并集合,操作2是把集合中一个元素移动到还有一个集合,操作3输出集合的个数和总和 思路:并查集,关键在 ...

随机推荐

  1. shader之顶点着色器

    Vertex Shader 是渲染管道中一个可编程的模块,用于处理独立的顶点.Vertex Shader接收Vertex Attribute Data,由定点数组对象通过渲染指令来生成. Vertex ...

  2. java之Date(日期)、Date格式化、Calendar(日历)

    参考http://how2j.cn/k/date/date-date/346.html Date(日期) Date类 注意:是java.util.Date; 而非 java.sql.Date,此类是给 ...

  3. UnityShader实例09:Stencil Buffer&Stencil Test

    http://blog.csdn.net/u011047171/article/details/46928463 Stencil Buffer&Stencil Test 在开始前先吐槽下uni ...

  4. P4769 [NOI2018]冒泡排序(dp)

    传送门 日常膜拜shadowice巨巨的题解 //minamoto #include<bits/stdc++.h> #define R register #define ll long l ...

  5. 立个flag---每天一篇博客

    从今天开始,需要更努力的学习了.开始写博客.锻炼自己,提高自己,争取可以从前端小菜鸟变成技术大牛.加油!

  6. redis单机上部署集群

    一.安装单机redis  redis的安装:版本至少是3.2.8及其以上,这里以3.2.8版本为例说明 1.安装redis wget http://download.redis.io/releases ...

  7. CC14:集合栈

    题目 请实现一种数据结构SetOfStacks,由多个栈组成,其中每个栈的大小为size,当前一个栈填满时,新建一个栈.该数据结构应支持与普通栈相同的push和pop操作. 给定一个操作序列int[] ...

  8. BZOJ 1036 && Luogu P2590 [ZJOI2008]树的统计 树链剖分

    链剖裸题...你值得一做~ 用线段树多维护一个mx,少写一个tag #include<cstdio> #include<iostream> #define ll long lo ...

  9. bzoj1095: [ZJOI2007]Hide 捉迷藏 动态点分治学习

    好迷啊...感觉动态点分治就是个玄学,蜜汁把树的深度缩到logn (静态)点分治大概是递归的时候分类讨论: 1.答案经过当前点,暴力(雾)算 2.答案不经过当前点,继续递归 由于原树可以长的奇形怪状( ...

  10. X Samara Regional Intercollegiate Programming Contest DIV2

    http://codeforces.com/gym/101341 其实我觉得这份题很不错的,虽然是div2,但是感觉对我挺有帮助(我比较垃圾0.0),还没补完(做的时候一直蒙逼,要补很多题)先写一点点 ...