股票交易(bzoj 1855)
Description
Input
Output
Sample Input
2 1 1 1
2 1 1 1
3 2 1 1
4 3 1 1
5 4 1 1
Sample Output
HINT
对于30%的数据,0 < =W 对于50%的数据,0 < =W 对于100%的数据,0 < =W
对于所有的数据,1 < =BPi < =APi < =1000,1 < =ASi,BSi < =MaxP
/*
f[i][j]表示到了第i天手里有j张股票的最大收益。
容易写出转移方程:
不买不卖:f[i][j]=f[i-1][j]
买入:f[i][j]=f[i-w-1][k]-(j-k)*ap[i]
卖出:f[i][j]=f[i-w-1][k]+(k-j)*bp[i] 对于买入,我们对其变形:
f[i][j]=f[i-w-1][k]+k*ap[i]-j*ap[i]
这样就可以用单调队列维护f[i-w-1][k]+k*ap[i]进行优化,卖出同理。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define N 2010
using namespace std;
int ap[N],bp[N],as[N],bs[N],q[N],f[N][N],t,maxp,w;
int main(){
scanf("%d%d%d",&t,&maxp,&w);
for(int i=;i<=t;i++)
scanf("%d%d%d%d",&ap[i],&bp[i],&as[i],&bs[i]);
memset(f,-/,sizeof(f));
for(int i=;i<=t;i++){
for(int j=;j<=as[i];j++) f[i][j]=-ap[i]*j;
for(int j=;j<=maxp;j++) f[i][j]=max(f[i][j],f[i-][j]);
int k=i-w-;
if(k<) continue;
int head=,tail=;
for(int j=;j<=maxp;j++){
while(head<tail&&q[head]<j-as[i]) head++;
while(head<tail&&f[k][j]+j*ap[i]>=f[k][q[tail-]]+q[tail-]*ap[i])tail--;
q[tail++]=j;
f[i][j]=max(f[i][j],f[k][q[head]]-ap[i]*(j-q[head]));
}
head=,tail=;
for(int j=maxp;j>=;j--){
while(head<tail&&q[head]>j+bs[i])head++;
while(head<tail&&f[k][j]+j*bp[i]>=f[k][q[tail-]]+q[tail-]*bp[i])tail--;
q[tail++]=j;
f[i][j]=max(f[i][j],f[k][q[head]]+bp[i]*(q[head]-j));
}
}
printf("%d",f[t][]);
return ;
}
股票交易(bzoj 1855)的更多相关文章
- 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569
题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...
- [BZOJ 1855] 股票交易
Link: BZOJ 1855 传送门 Solution: 比较明显的$dp$模型 令$dp[i][j]$为第$i$天持有$j$支股票时的最大利润 对其购买股票和售出股票分别$dp$,这里以购买为例: ...
- BZOJ 1855: [Scoi2010]股票交易(DP+单调队列)
1855: [Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未 ...
- BZOJ 1855 股票交易(单调队列优化DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...
- ●BZOJ 1855 [Scoi2010]股票交易
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1855 题解: DP,单调队列优化.(好久没做 DP题,居然还意外地想出来了) 定义 dp[i ...
- bzoj 1855: [Scoi2010]股票交易
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...
- BZOJ 1855 股票交易 (算竞进阶习题)
单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...
- BZOJ 1855 [Scoi2010]股票交易 ——动态规划
DP方程是比较简单的,主要有三种:什么都不做.买入.卖出. 发现买入卖出都是$\Theta (n^3)$但是转移方程都是线性的,而且决策和当前的情况是分开的. 所以可以单调队列优化. 复杂度$\The ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
随机推荐
- SummerVocation_Learning--java的线程机制
线程:是一个程序内部的执行路径.普通程序只有main()一条路径.如下列程序: import java.lang.Thread; //导入线程实现包 public class Test_Thread ...
- C/C++程序基础 (九)排序算法简述
排序算法 算法复杂度 算法简述 插入排序 N2 前方有序,依次将后方无序数据插入前方合适位置. 冒泡排序 N2 前方有序,从后方两两比较,将最小泡冒到前方. 选择排序 N2 前方有序,从后方选择最小的 ...
- Nodejs NPM CNPM优雅安装install
由于npm和cnpm都能安装组件,安装的组件有的保存在c盘用户目录的Appdata隐藏目录下,有的保存在安装node的目录下,而且安装在c盘的话,重装系统又得重新部署,甚是麻烦,所以这里提供优雅安装的 ...
- stark组件(2):提取公共视图函数、URL分发和设置别名
效果图: Handler类里处理的增删改查.路由分发.给URL设置别名等包括以后还要添加的很多功能,每一个数据库的类都需要,所以我们要把Handler提取成一个基类.提取成基类后,每一个数据表都可以继 ...
- c++ 操作符优先级
优先级 操作符 描述 例子 结合性 1 ()[]->.::++-- 调节优先级的括号操作符数组下标访问操作符通过指向对象的指针访问成员的操作符通过对象本身访问成员的操作符作用域操作符后置自增操作 ...
- Paper Folding UVA - 177 模拟+思路+找规律
题目:题目链接 思路:1到4是很容易写出来的,我们先考虑这四种情况的绘制顺序 1:ru 2:rulu 3:rululdlu 4:rululdluldrdldlu 不难发现,相较于前一行,每一次增加一倍 ...
- UVA:11297-Census(二维线段树)
Census Time Limit: 8 sec Description This year, there have been many problems with population calcul ...
- Appium运行时没有启动activity的权限:A new session could not be created.(Original error: Permission to start activity denied)
小白搞appium,遇到启动不了activity的问题: 查找解决方案说是跟AndroidManifest.xml有关系,参考:https://github.com/appium/appium/iss ...
- 自定义RadioGrop,支持添加包裹着的RadioButton
控件类: package com.chinaCEB.cebView; import android.annotation.TargetApi; import android.content.Conte ...
- mysql初始化失败的问题
首先:my.ini 配置文件中 路径需要改成自己电脑mysql解压的路径. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ...