[HDU3516] Tree Construction [四边形不等式dp]
题面:
思路:
这道题有个结论:
把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left[i\right]+y\left[k\right]-y\left[j\right]$
然后就明显可以区间dp了
设$dp\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$中的点连起来的最小花费,然后定义上面那个最小花费为$w\left(i,k,j\right)$
那么转移方程就比较显然了:
$dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k\right]+dp\left[k+1\right]\left[j\right]+w\left(i,k,j\right)\right)$
证明一下可以看出,$w$函数在$k$不变的时候,是满足四边形不等式的
因此可以给$dp$套一个优化,在$O\left(n^2\right)$中解决
这道题目的重难点实际上就是求$w\left(i,k,j\right)$的表达式,求出来就很显然了
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
int n,x[],y[],dp[][],s[][];
int w(int l,int mid,int r){
return x[mid+]-x[l]+y[mid]-y[r];
}
int main(){
int i,j,len,tmp,k;
while(~scanf("%d",&n)){
for(i=;i<=n;i++) x[i]=read(),y[i]=read();
for(i=;i<=n;i++) dp[i][i]=,s[i][i]=i;
for(len=;len<n;len++){
for(i=;i<=n;i++){
j=len+i;if(j>n) break;
dp[i][j]=inf;
for(k=s[i][j-];k<=s[i+][j]&&k<j;k++){
if((tmp=dp[i][k]+dp[k+][j]+w(i,k,j))<dp[i][j]){
dp[i][j]=tmp;s[i][j]=k;
}
}
}
}
printf("%d\n",dp[][n]);
}
}
[HDU3516] Tree Construction [四边形不等式dp]的更多相关文章
- hdu3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f ...
- HDU 3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...
- HDOJ 3516 Tree Construction 四边形优化dp
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...
- hdu3516 Tree Construction (区间dp+四边形优化)
构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...
- 【整理】石子合并问题(四边形不等式DP优化)
有很多种算法: 1,任意两堆可以合并:贪心+单调队列. 2,相邻两堆可合并:区间DP (O(n^3)) ). 3,相邻,四边形不等式优化DP (O(n^2) ). 4,相邻,GarsiaWach ...
- [HDU3480] Division [四边形不等式dp]
题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...
- [POJ1160] Post Office [四边形不等式dp]
题面: 传送门 思路: dp方程实际上很好想 设$dp\left[i\right]\left[j\right]$表示前$j$个镇子设立$i$个邮局的最小花费 然后状态转移: $dp\left[i\ri ...
- 记忆的轮廓 期望 四边形不等式dp|题解
记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编 ...
- hdu3516 Tree Construction
Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...
随机推荐
- 初学HBase的几个问题
转自 http://itindex.net/detail/50571-hbase-%E9%97%AE%E9%A2%98 本文主要针对对HBase不了解的人.主要想基于个人的理解回答以下几个问题: 什么 ...
- Jmeter后置处理器
一.什么是关联? 将请求1的输出 作为 请求2 的输入,则称之为关联 例如:“用户登录”请求中服务器返回了token,“查询用户信息”请求需要把token返回给服务器进行验证 二.通过JSON Pat ...
- 【wiki】红帽linux
Red Hat Enterprise Linux From Wikipedia, the free encyclopedia wiki 上面红帽的版本信息. https://en.wikipedia. ...
- 修改android studio中的avd sdk路径、avd sdk找不到的解决方案
要进行Android应用程序的开发,首先就要搭建好Android的开发环境,所需要的工具有如下4个:1.java JDK:2.Android SDK:3.Eclipse:4.ADT 1.java JD ...
- React后台管理系统-table-list组件
table-list组件可用于商品列表,用户列表页面 需要传入一个tableHeads集合和tablebody import React from 'react'; // 通用的列表 class ...
- Oracle下如何收集 Systemstate dump
2: dump (不包括lock element) 10: dump 11: dump + global cache of RAC 256: short stack (函数堆栈) 258: 256+2 ...
- Java基础面试题:super.getClass().getName() 执行结果是什么?
package com.swift; import java.util.Date; public class Getclass_Test extends Date { public static vo ...
- Ubuntu 14.04 LTS 触摸板无法使用
c16b上,触摸板不能使用,查找后发现,需要在加载驱动时增加参数. 如下所说: 1.使用以下命令后,触摸板可以使用 sudo modprobe -r psmouse sudo modprobe psm ...
- 成员变量(实例变量)&局部变量&静态变量(类变量)的区别
成员变量(实例变量)&局部变量区别: (1)作用域 成员变量:针对整个类有效. 局部变量:只在某个范围内有效.(一般指的就是方法,语句体内) (2)存储位置 成员变量:随着对象的创建而存在,随 ...
- <%%>用法初步认识
<%%>是用于向客户端插入服务器代码所使用的一种标记 例如为了在HTML页面上展示由服务器提供的当前用户的某条信息或名字等便可使用 前台 <a href="home.asp ...