Matrix Power Series
Time Limit: 3000MS   Memory Limit: 131072K
Total Submissions: 15739   Accepted: 6724

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative
integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

当k为奇数时

Sk = A + A2 + A3 + … + Ak  

    =(1+Ak/2)*(A + A2 + A3 + … + Ak/2  )+{Ak}

    =(1+Ak/2)*(Sk/2 )+{Ak}

当k为偶数时

Sk = A + A2 + A3 + … + Ak  

    =(1+Ak/2)*(A + A2 + A3 + … + Ak/2  )+{Ak}

    =(1+Ak/2)*(Sk/2 )

就能够二分递归求Sk

代码:

//829ms
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n,m;
struct matrix
{
int ma[50][50];
} a;
matrix multi(matrix x,matrix y)//矩阵相乘
{
matrix ans;
memset(ans.ma,0,sizeof(ans.ma));
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(x.ma[i][j])//稀疏矩阵优化
for(int k=1; k<=n; k++)
{
ans.ma[i][k]=(ans.ma[i][k]+x.ma[i][j]*y.ma[j][k])%m;
}
}
}
return ans;
}
matrix add(matrix x,matrix y)//矩阵相加
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
x.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%m;
return x;
}
matrix pow(matrix a,int m)
{
matrix ans;
for(int i=1; i<=n; i++) //单位矩阵
{
for(int j=1; j<=n; j++)
{
if(i==j)
ans.ma[i][j]=1;
else
ans.ma[i][j]=0;
}
}
while(m)//矩阵高速幂
{
if(m&1)
{
ans=multi(ans,a);
}
a=multi(a,a);
m=(m>>1);
}
return ans;
}
matrix solve(matrix x,int k)//递归求Sk
{
if(k==1)
return x;
matrix ans;
for(int i=1; i<=n; i++) //单位矩阵
{
for(int j=1; j<=n; j++)
{
if(i==j)
ans.ma[i][j]=1;
else
ans.ma[i][j]=0;
}
}
ans=add(ans,pow(x,k/2));
ans=multi(ans,solve(x,k/2));
if(k&1)
ans=add(ans,pow(x,k));
return ans;
}
int main()
{
int k;
while(~scanf("%d%d%d",&n,&k,&m))
{
matrix ans,a;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
scanf("%d",&a.ma[i][j]);
}
ans=solve(a,k);
for(int i=1; i<=n; i++)
{
for(int j=1; j<n; j++)
printf("%d ",ans.ma[i][j]);
printf("%d\n",ans.ma[i][n]);
}
}
return 0;
}

poj 3233 Matrix Power Series(矩阵二分,高速幂)的更多相关文章

  1. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  2. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  3. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  4. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  5. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  6. POJ 3233 Matrix Power Series(矩阵等比求和)

    题目链接 模板题. #include <cstdio> #include <cstring> #include <iostream> #include <ma ...

  7. 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series

    poj 1575  Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...

  8. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  9. [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted:  ...

随机推荐

  1. Server-Side Rendering(服务端渲染)的优点与缺点

    优点 1. SEO 客户端渲染,页面中只有初始的几个html容器,js生成内容填充到容器中,爬虫只能识别到初始的html容器,js生成的内容一般不会被识别,而服务端渲染直接给出html,爬虫可以识别到 ...

  2. C#函数多返回值的方法

    C#以前都是不支持多返回值,当需要返回多个值的时候,就会感觉比较麻烦,通常的做法有 1.采用ref,out 关键字返回 2.定义类或者结构体 返回对象 C# 6.0出来了新的语法 Tuple 支付返回 ...

  3. 12深入理解C指针之---指针多层间接引用

    该系列文章源于<深入理解C指针>的阅读与理解,由于本人的见识和知识的欠缺可能有误,还望大家批评指教. 一.指针多层引用 1.定义:指针可以用不同的间接引用层级,通常使用多重指针或字符数组来 ...

  4. 共享内存之——mmap内存映射

    共享内存允许两个或多个进程共享一给定的存储区,因为数据不需要来回复制,所以是最快的一种进程间通信机制.共享内存可以通过mmap()映射普通文件 (特殊情况下还可以采用匿名映射)机制实现,也可以通过sy ...

  5. WKWebView与js交互中产生的内存泄漏

    最近开发中突然发现富文本帖子详情内存没有释放掉,找了好久问题都没找到,终于今天发现了问题,先上一点代码片段 WKWebViewConfiguration *configuration = [[WKWe ...

  6. 51 Nod 1238 最小公倍数之和 V3 杜教筛

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...

  7. HDU 5937 Equation(DFS+剪枝)

    题目链接 Equation 给定1-9这9个数字各自的卡片数,求能构成形如$i + j = k$的等式个数 等式中$i,j,k$必须都为个位数 若两个等式中$i,j,k$不完全相等,则这两个等式为不同 ...

  8. logging模块详解以及常见代码

    1.在django中获取客户端IP地址: if 'HTTP_X_FORWARDED_FOR' in request.META: ip = request.META['HTTP_X_FORWARDED_ ...

  9. 提高速度 history 的利用

    history的介绍history是shell的内置命令,其内容在系统默认的shell的man手册中.history是显示在终端输入并执行的过命令,系统默认保留1000条.[root@localhos ...

  10. 讯飞语音识别Android-Demo

    import java.io.UnsupportedEncodingException; import android.app.Activity; import android.os.Bundle; ...