Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9687   Accepted: 4647

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance
of each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of MD
constraints (1 <= MD <= 10,000) tells which cows dislike each
other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must
be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated
positive integers: A, B, and D, with 1 <= A < B <= N. Cows A
and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows #2
and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
第一次接触真的很难弄好..
附上某大牛的解说:
 N个人编号为1-N,并且按照编号顺序排成一条直线,任何两个人的位置不重合,然后给定一些约束条件。

       X(X <= 100000)组约束Ax Bx Cx(1 <= Ax < Bx <= N),表示Ax和Bx的距离不能大于Cx。
       Y(X <= 100000)组约束Ay By Cy(1 <= Ay < By <= N),表示Ay和By的距离不能小于Cy。
       如果这样的排列存在,输出1-N这两个人的最长可能距离,如果不存在,输出-1,如果无限长输出-2。
      像这类问题,N个人的位置在一条直线上呈线性排列,某两个人的位置满足某些约束条件,最后要求第一个人和最后一个人的最长可能距离,这种是最直白的差分约束问题,因为可以用距离作为变量列出不等式组,然后再转化成图求最短路。
      令第x个人的位置为d[x](不妨设d[x]为x的递增函数,即随着x的增大,d[x]的位置朝着x正方向延伸)。
      那么我们可以列出一些约束条件如下:
      1、对于所有的Ax Bx Cx,有 d[Bx] - d[Ax] <= Cx;
      2、对于所有的Ay By Cy,有 d[By] - d[Ay] >= Cy;
      3、然后根据我们的设定,有 d[x] >= d[x-1] + 1 (1 < x <= N)  (这个条件是表示任何两个人的位置不重合)
     而我们需要求的是d[N] - d[1]的最大值,即表示成d[N] - d[1] <= T,要求的就是这个T。
     于是我们将所有的不等式都转化成d[x] - d[y] <= z的形式,如下:
      1、d[Bx]  -  d[Ax]    <=    Cx
      2、d[Ay]  -  d[By]    <=  -Cy
      3、d[x-1] -    d[x]    <=    -1
     对于d[x] - d[y] <= z,令z = w(y, x),那么有 d[x] <= d[y] + w(y, x),所以当d[x] > d[y] + w(y, x),我们需要更新d[x]的值,这对应了最短路的松弛操作,于是问题转化成了求1到N的最短路。
       对于所有满足d[x] - d[y] <= z的不等式,从y向x建立一条权值为z的有向边。
      然后从起点1出发,利用SPFA求到各个点的最短路,如果1到N不可达,说明最短路(即上文中的T)无限长,输出-2。如果某个点进入队列大于等于N次, 则必定存在一条负环,即没有最短路,输出-1。否则T就等于1到N的最短路。
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <stdlib.h>
#include <queue>
using namespace std;
const int M = ;
const int N = ;
const int INF = ;
struct Edge{
int v,w,next;
}edge[M];
int head[N];
int n;
bool vis[N];
int time[N],low[N];
int spfa(int s){
queue<int> q;
for(int i=;i<=n;i++){
vis[i] = false;
low[i] = INF;
time[i] = ;
}
low[s] = ;
time[s]++;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k = head[u];k!=-;k=edge[k].next){
int v = edge[k].v,w = edge[k].w;
if(low[v]>low[u]+w){
low[v] = low[u]+w;
if(!vis[v]){
vis[v] = true;
q.push(v);
if(time[v]++>n) return -;
}
}
}
}
if(low[n]==INF) return -;
return low[n];
}
void addEdge(int u,int v,int w,int &k){
edge[k].v = v,edge[k].w = w,edge[k].next = head[u],head[u]=k++;
}
int main()
{
int ml,md;
while(scanf("%d%d%d",&n,&ml,&md)!=EOF){
memset(head,-,sizeof(head));
int u,v,w;
int tot = ;
for(int i=;i<ml;i++){
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v,w,tot);
}
for(int i=;i<md;i++){
scanf("%d%d%d",&u,&v,&w);
addEdge(v,u,-w,tot);
}
for(int i=;i<n;i++){
addEdge(i+,i,-,tot);
}
printf("%d\n",spfa());
}
}

hdu 3592

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <stdlib.h>
#include <queue>
using namespace std;
const int M = ;
const int N = ;
const int INF = ;
struct Edge
{
int v,w,next;
} edge[M];
int head[N];
int n;
bool vis[N];
int time[N],low[N];
int spfa(int s)
{
queue<int> q;
for(int i=; i<=n; i++)
{
vis[i] = false;
low[i] = INF;
time[i] = ;
}
low[s] = ;
time[s]++;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v,w = edge[k].w;
if(low[v]>low[u]+w)
{
low[v] = low[u]+w;
if(!vis[v])
{
vis[v] = true;
q.push(v);
if(time[v]++>n) return -;
}
}
}
}
if(low[n]==INF) return -;
return low[n];
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w = w,edge[k].next = head[u],head[u]=k++;
}
int main()
{
int ml,md;
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d%d%d",&n,&ml,&md);
memset(head,-,sizeof(head));
int u,v,w;
int tot = ;
for(int i=; i<ml; i++)
{
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v,w,tot);
}
for(int i=; i<md; i++)
{
scanf("%d%d%d",&u,&v,&w);
addEdge(v,u,-w,tot);
}
for(int i=; i<n; i++)
{
addEdge(i+,i,-,tot);
}
printf("%d\n",spfa());
}
}

poj 3169&hdu3592(差分约束)的更多相关文章

  1. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  4. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  5. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  6. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  7. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  8. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  9. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

随机推荐

  1. RGB色彩的计算机表示

    计算机显示模式[编辑] 24比特模式[编辑] 每像素24位(比特s per pixel,bpp)编码的RGB值:使用三个8位无符号整数(0到255)表示红色.绿色和蓝色的强度.这是当前主流的标准表示方 ...

  2. c++ 操作符优先级

    优先级 操作符 描述 例子 结合性 1 ()[]->.::++-- 调节优先级的括号操作符数组下标访问操作符通过指向对象的指针访问成员的操作符通过对象本身访问成员的操作符作用域操作符后置自增操作 ...

  3. UVA - 753 A Plug for UNIX(网络流)

    题意 给定一些插头设备和插座,有一些方法可以把其中一些插头变成另一种插头.求无法匹配插座的插头设备个数. 题解 用\(map\)给每个字符串标号为\(a_i\)和\(b_i\). 读入每种改变插头的方 ...

  4. 使用python实现简单爬虫

    简单的爬虫架构 调度器 URL管理器 管理待抓取的URL集合和已抓取的URL,防止重复抓取,防止死循环 功能列表 1:判断新添加URL是否在容器中 2:向管理器添加新URL 3:判断容器是否为空 4: ...

  5. 《鸟哥的Linux私房菜》学习笔记(0)——磁盘与文件系统管理

    一.Linux的登陆流程 login: 用户名:每个用户名都有一个用户ID(用户标识符),计算机处理的就是用户ID(数字)而不是用户名(字符),. 认证机制:Authentication,比如密码或者 ...

  6. 分布式存储系统可靠性系列五:副本放置算法 & CopySet Replication

    本文来自网易云社区 作者:孙建良 在分布式存储系统 中说明了,在一定情况下,copyset的数量不是越多越好,在恢复时间确定的情况下,找到合适的copyset的数量可以降低数据丢失的概率. 在分布式存 ...

  7. Python+Selenium基础篇之5-第一个完整的自动化测试脚本

    前面文章,我们介绍了如何采用XPath表达式去定位网页元素,在掌握了如何抓取或者如何书写精确的XPath表达式后,我们可以开始写自己的第一个真正意义上的webui 自动化测试脚本,就相当于,你在学习P ...

  8. h5 video切换到横屏全屏

    将video设置为屏幕大小,覆盖其他元素,想到这种操作我也是震惊的 function() { let startIcon = document.getElementById('start-icon') ...

  9. c++ 中 define

    1.简单的define定义 #define MAXTIME 1000 一个简单的MAXTIME就定义好了,它代表1000,如果在程序里面写 if(i<MAXTIME){.........} 编译 ...

  10. pat 团体天梯赛 L2-004. 这是二叉搜索树吗?

    L2-004. 这是二叉搜索树吗? 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 一棵二叉搜索树可被递归地定义为具有下列性质的 ...